首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulphation and carbonation have been performed on hydrated spent residues from a 75 kWth dual fluidized bed combustion (FBC) pilot plant operating as a CO2 looping cycle unit. The sulphation and carbonation tests were done in an atmospheric pressure thermogravimetric analyzer (TGA), with the sulphation performed using synthetic flue gas (0.45% SO2, 3% O2, 15% CO2 and N2 balance). Additional tests were carried out in a tube furnace (TF) with a higher SO2 concentration (1%) and conversions were determined by quantitative X-ray diffraction (QXRD) analyses. The morphology of the sulphated samples from the TF was examined by scanning electron microscopy (SEM). Sulphation tests were performed at 850 °C for 150 min and carbonation tests at 750 °C, 10 cycles for 15 min (7.5 min calcination + 7.5 min carbonation). Sulphation conversions obtained for the hydrated samples depended on sample type: in the TGA, they were ~75–85% (higher values were obtained for samples from the carbonator); and in the TF, values around 90% and 70% for sample from carbonator and calciner, respectively, were achieved, in comparison to the 40% conversion seen with the original sample. The SEM analyses showed significant residual porosity that can increase total conversion with longer sulphation time. The carbonation tests showed a smaller influence of the sample type and typical conversions after 10 cycles were 50% – about 10% higher than that for the original sample. The influence of hydration duration, in the range of 15–60 min, is not apparent, indicating that samples are ready for use for either SO2 retention, or further CO2 capture after at most 15 min using saturated steam. The present results show that, upon hydration, spent residues from FBC CO2 capture cycles are good sorbents for both SO2 retention and additional CO2 capture.  相似文献   

2.
Vasilije Manovic  Edward J. Anthony 《Fuel》2008,87(8-9):1564-1573
The steam hydration reactivation characteristics of three limestone samples after multiple CO2 looping cycles are presented here. The CO2 cycles were performed in a tube furnace (TF) and the resulting samples were hydrated by steam in a pressure reactor (PR). The reactivation was performed with spent samples after carbonation and calcination stages. The reactivation tests were done with a saturated steam pressure at 200 °C and also at atmospheric pressure and 100 °C. The characteristics of the reactivation samples were examined using BET and BJH pore characterization (for the original and spent samples, and samples reactivated under different conditions) and also by means of a thermogravimetric analyzer (TGA). The levels of hydration achieved by the reactivated samples were determined as well as the conversions during sulphation and multiple carbonation cycles. It was found that the presence of a CaCO3 layer strongly hinders sorbent hydration and adversely affects the properties of the reactivated sorbent with regard to its behavior in sulphation and multiple carbonation cycles. Here, hydration of calcined samples under pressure is the most effective method to produce superior sulphur sorbents. However, reactivation of calcined samples under atmospheric conditions also produces sorbents with significantly better properties in comparison to those of the original sorbents. These results show that separate CO2 capture and SO2 retention in fluidized bed systems enhanced by steam reactivation is promising even for atmospheric conditions if the material for hydration is taken from the calciner.  相似文献   

3.
Paper presents effect of size fraction and glass structure of fly ashes on cement hydration. Fly ashes below 16 μm and 16–32 μm, both from the 1st and 3rd section of electro-filter, were applied. Hydration heat, content of Ca(OH)2 and unreacted C3S were studied and compressive strength and microstructure were analysed. Results show that finer ashes have higher depolymerization degree of SiO4 units in glass what increases pozzolanic reactivity. Incorporation of fly ashes below 16 μm from the 3rd section gives cement class 52.5 N. At 180 day, Ca(OH)2 content decreases by 67% and C3S hydration degree increases by 50% relative to control sample.  相似文献   

4.
Porous mullite ceramics with unidirectionally oriented pores were prepared by an extrusion method using rayon fibers as the pore formers and the characteristics of microbubbles generated by these porous ceramics were investigated. The 1200 mm long ceramics were tubular and of thick or thin types of 20–30 mm inner diameter and 30–50 mm outer diameter, respectively. The thin and thick samples had porosities of 47 and 49% and average pore radii of 7.8 μm. The gas permeabilities of the thick and thin samples were 4.1 × 10?14 and 5.4 × 10?14 m2, respectively. Microbubbles were generated by introducing N2 gas through the ceramic tube by immersing it into water. The minimum pressure (bubble point pressure) for generation of microbubbles was 20 kPa, much lower than for other bubble-forming methods. The average microbubble radii ranged from about 70 to 105 μm at flow rates of 0.15–0.25 L/min in the thin sample and 0.3–0.7 L/min in the thick sample. These bubble sizes are much smaller than calculated for a Fritz-type bubble such as generally formed by bubbling from pores and/or orifices. However, the present bubble sizes agree well with the calculated value based on nanobubbles, indicating that bubble formation occurs by mixing the gas with water in small pores. Since microbubbles enhance the dissolution rate of a gas phase in water, they are potentially useful for improving water environments, especially oxygen-deficient water. The effectiveness of gas dissolution in water was confirmed by determining the dissolution behavior of CO2 gas using these porous ceramics.  相似文献   

5.
Porous mullite ceramics with unidirectionally oriented pores were prepared by an extrusion method to investigate their capillary rise properties. Rayon fibers 16.5 μm in diameter and 800 μm long were used as the pore formers by kneading with alumina powder, kaolin clay, China earthen clay and binder with varying Fe2O3 contents of 0, 5 and 7 mass%. The resulting pastes were extruded into cylindrical tubes (outer diameter (OD) 30–50 mm and inner diameter (ID) 20–30 mm), dried at room temperature and fired at 1500 °C for 4 h. The bulk densities of the resulting porous ceramics ranged from 1.31 to 1.67 g/cm3, with apparent porosities of 43.2–59.3%. The pore size distributions measured by Hg porosimetry showed a sharp peak at 10.0 μm in the sample without Fe2O3 and at 15.6 μm in the samples containing Fe2O3; these pores, which arose from the burnt-out rayon fibers, corresponded to total pore volumes ranging from 0.24 to 0.34 ml/g. SEM showed a microstructure consisting of unidirectionally oriented pores in a porous mullite matrix. Prismatic mullite crystals were well developed on the surfaces of the pore walls owing to the liquid phase formed by the Fe2O3 component added to color the samples. The bending strengths of the tubular samples ranged from 15.6 to 26.3 MPa. The height of capillary rise, measured under controlled relative humidities (RH) of 50, 65 and 85%, was greater in the ceramics containing Fe2O3 than in those without Fe2O3, especially in the thinner samples. The maximum capillary rise reached about 1300 mm, much higher than previously reported. This excellent capillary rise ability is thought to be due to the controlled pore size, pore distribution and pore orientation in these porous mullite ceramics.  相似文献   

6.
This work aims at studying rate of densification, resistance to hydration and slag attack of 0.0–2.0 wt.% ilmenite-doped MgO-dolomite refractories fired at 1400–1700 °C, in relation to their thermal equilibrium and microfabric. XRF, XRD, SEM, EDAX and mercury intrusion were used to characterize the fired samples. The modular system MgO-MF(MA)-C2S-M2S was applied in determining their thermal equilibrium data. The rate of hydration and attack by steel-slag were also measured using CLM.It is concluded that doping the dolomitic-magnesite with 0.5 wt.% ilmenite leads to maximize rate of densification after firing for 4 h at only 1500 °C. Direct-bonded MgO-MgO network is shown enclosing merwinite and monticellite with minor magnesio-ferrite spinel solid solution ex-soluted within the periclase network. Due to the dense microfabric, the hydration resistance is enhanced 8 times compared with the un-doped samples. Also, there is deeper infiltration of the slag/refractory reaction products of the un-doped MgO-dolomite sample as compared with the doped one.  相似文献   

7.
1H NMR has been used to characterise white Portland cement paste incorporating 10 wt.% of silica fume. Samples were measured sealed throughout the hydration without sample drying. Paste compositions and C–S–H characteristics are calculated based on 1H NMR signal intensities and relaxation analysis. The results are compared with a similar study of plain white cement paste. While the presence of silica fume has little influence on C–S–H densities, the chemical composition is impacted. After 28 days of sealed hydration, the Ca/(Si + Al) ratio of the C–S–H is 1.33 and the H2O/(Si + Al) ratio is 1.10 when 10% of silica fume is added to the white cement. A densification of the C–S–H with time is observed. There are no major changes in capillary, C–S–H gel and interlayer pore sizes for the paste containing silica fume compared to the plain white cement paste. However, the gel/interlayer water ratio increases in the silica fume blend.  相似文献   

8.
《Ceramics International》2017,43(12):8743-8754
The strength integrity and chemical stability of porous alumina ceramics operating under extreme service conditions are of major importance in understanding their service behavior if they are to stand the test of time. In the present study, the effect of porosity and different pore former type on the mechanical strength and corrosion resistance properties of porous alumina ceramics have been studied. Given the potential of agricultural wastes as pore-forming agents (PFAs), a series of porous alumina ceramics (Al2O3-xPFA; x=5, 10, 15 and 20 wt%) were successfully prepared from rice husk (RH) and sugarcane bagasse (SCB) through the powder metallurgy technique. Experimental results showed that the porosity (44–67%) and the pore size (70–178 µm) of porous alumina samples maintained a linear relationship with the PFA loading. Comprehensive mechanical strength characterization of the porous alumina samples was conducted not just as a function of porosity but also as a function of the different PFA type used. Overall, the mechanical properties showed an inverse relationship with the porosity as the developed porous alumina samples exhibited tensile and compressive strengths of 20.4–1.5 MPa and 179.5–10.9 MPa respectively. Moreover, higher strengths were observed in the SCB shaped samples up to the 15 wt% PFA mark, while beyond this point, the silica peak observed in the XRD pattern of the RH shaped samples favored their relatively high strength. The corrosion resistance characterization of the porous alumina samples in hot 10 wt% NaOH and 20 wt% H2SO4 solutions was also investigated by considering sample formulations with 5–15 wt% PFA addition. With increasing porosity, the mass loss range in RH and SCB shaped samples after corrosion in NaOH solution for 8 h were 1.25–3.6% and 0.44–2.9% respectively; on the other hand, after corrosion in H2SO4 solution for 8 h, the mass loss range in RH and SCB shaped samples were 0.62–1.5% and 0.68–3.3% respectively.  相似文献   

9.
A sample with a composition of 84 wt% MgH2–10 wt% Ni–2 wt% NaAlH4–2 wt% Ti–2 wt% CNT (named MgH2–10Ni–2NaAlH4–2Ti–2CNT) was prepared by milling in a planetary ball mill under H2. Activation of the sample was not required. At the first cycle, the sample absorbed 3.75 wt% H for 10 min, and 4.17 wt% H for 60 min at 593 K under 12 bar H2. Reactive mechanical grinding of Mg with Ni, NaAlH4, Ti, and CNT is thought to create defects on the surface and in the interior of Mg, as well as to reduce Mg particle size.  相似文献   

10.
The high sintering temperature required for aluminum nitride (AlN) at typically 1800 °C, is an impediment to its development as an engineering material. Spark plasma sintering (SPS) of AlN is carried out with samarium oxide (Sm2O3) as sintering additive at a sintering temperature as low as 1500–1600 °C. The effect of sintering temperature and SPS cycle on the microstructure and performance of AlN is studied. There appears to be a direct correlation between SPS temperature and number of repeated SPS sintering cycle per sample with the density of the final sintered sample. The addition of Sm2O3 as a sintering aid (1 and 3 wt.%) improves the properties and density of AlN noticeably. Thermal conductivity of AlN samples improves with increase in number of SPS cycle (maximum of 2) and sintering temperature (up to 1600 °C). Thermal conductivity is found to be greatly improved with the presence of Sm2O3 as sintering additive, with a thermal conductivity value about 118 W m−1 K−1) for the 3 wt.% Sm2O3-doped AlN sample SPS at 1500 °C for 3 min. Dielectric constant of the sintered AlN samples is dependent on the relative density of the samples. The number of repeated SPS cycle and sintering aid do not, however, cause significant elevation of the dielectric constant of the final sintered samples. Microstructures of the AlN samples show that, densification of AlN sample is effectively enhanced through increase in the operating SPS temperature and the employment of multiple SPS cycles. Addition of Sm2O3 greatly improves the densification of AlN sample while maintaining a fine grain structure. The Sm2O3 dopant modifies the microstructures to decidedly faceted AlN grains, resulting in the flattening of AlN–AlN grain contacts.  相似文献   

11.
A sample of 86 wt% MgH2–10 wt% Ni–2 wt% NaAlH4–2 wt% Ti (named MgH2–10Ni–2NaAlH4–2Ti) was prepared by reactive mechanical grinding. Activation of the sample was not required at 573 K. At the first hydriding–dehydriding cycle (n = 1), the sample absorbed more than 5 wt% H at 573 K under 12 bar H2 for 60 min. The hydriding rate increased as the temperature increased from 423 K to 553 K. MgH2–10Ni–2NaAlH4–2Ti showed quite high hydridng rates at relatively low temperatures of 423 K and 473 K under 12 bar H2, absorbing 4.02 wt% H for 60 min at 473 K.  相似文献   

12.
Three-dimensional structures with directionally oriented pore networks were fabricated from a 10 mol% ceria-stabilized zirconia and alumina composite (10CeTZP-Al2O3) via freeze casting. Ceramic suspensions of different concentrations (30, 40 and 50 wt% solids) were frozen at various rates (2, 5 and 10 °C/min) to obtain lamellar structures with aligned tubular pores of different characteristics: porosity (75–84%), pore dimensions (small diameter of the elliptical pores: 10–23 μm; large diameter of the elliptical pores: ∼200 ± 70 μm), lamella thickness (2.7–4 μm) and compression strength (1–12 MPa). In vitro assays confirmed the non-cytotoxic nature of the samples. Furthermore, specific osseous differentiation genes were quantified after incubating osteoblasts on different cross sections of the samples during 7 days in supplemented culture medium; results demonstrated that the freeze casted structures induce up to nine times more osseous gene expression than tissue culture polystyrene (TCPS), an advanced surface used for optimized in vitro cell growth.  相似文献   

13.
《Ceramics International》2017,43(15):11786-11791
Hollow Microspheres of SiO2-TiO2 photocatalysts whose walls are made up of mesoporous cellular foams were synthesized with the aid of hexane as a swelling agent and P123 as a pore template by an emulsion templating method. Pore structure of materials and crystal phase of titanium oxide was tailored by hydrothermal and calcination temperature during synthesis of samples. The samples were characterized with field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), N2 adsorption–desorption experiments, X-ray photoelectron spectroscopy (XPS) and X ray diffraction (XRD) techniques. The effect of pore structure and titania phase on photoactivity were evaluated by methylene blue (MB) degradation test under UV light as well. Results showed that hydrothermal temperature during synthesis process has a significant effect on pore and window sizes of mesostructured cellular foam. Interestingly, for the sample hydrothermally treated at higher temperature (130 °C), anatase to rutile transformation was avoided after calcination treatment as high as 800 °C. The highest photocatalytic activity was detected from the sample hydrothermally treated at 130 °C and calcined at 800 °C for which the highest degree of crystallinity and anatase phase as well as enhanced pore connectivity was obtained.  相似文献   

14.
Temperature and alkaline hydroxide treatment effects on the surface area and pore structure of the cathode deposit multi-walled carbon nanotube (MWCNT)–graphite mixture were investigated in a temperature range of 600–800 °C. Hydrogen sorption properties of the MWCNT–graphite mixture samples were studied by varying the alkaline hydroxide-activation temperature. Pore characterization of modified MWCNT–graphite mixture was performed with the observation of adsorption–desorption isotherms of N2 at 77 K. Hydrogen sorption of the non-treated and treated MWCNT–graphite mixture was carried out using a volumetric apparatus at 77 K. The highest surface area of the sample was obtained as 275 m2 g?1 by treatments with KOH at 600 °C. The increase in the specific surface area of MWCNT–graphite sample mixture was about 13 times. The maximum amount of hydrogen adsorbed on the MWCNT–graphite sample mixture was found as 0.75 and 0.54 wt.% by chemical treatments with KOH at 600 °C and NaOH at 700 °C, respectively whereas it was 0.01 wt.% for the original sample. The hydrogen sorption capacity was enhanced considerably by KOH treatments at 600 °C.  相似文献   

15.
《Ceramics International》2017,43(18):16780-16786
The high hydration potential of CaO and MgO phases restricted the application of Mag-Dol refractory composites. In this study, the impact of nano-silica (SiO2) addition on the physical, mechanical, thermo-mechanical as well as microstructure of Mag-Dol refractory composites is investigated. Mag-Dol compositions were prepared by using calcined dolomite and magnesite particles (micron, 0–1, 1–3, 3–5, and 5–8 mm), liquid resin, and 0, 0.5, 1, 1.5, 2, and 2.5 wt% nano SiO2 as additives. Specimens were heated up to 1650 °C for the 3 h soaking period. Fired specimens were characterized by physical (apparent porosity, bulk density, and hydration resistance), mechanical (cold crushing strength), and thermo-mechanical (flexural strength at 1200 °C) measurements. XRD and SEM/EDS analysis were done to study phases and microstructure analysis of the fired samples, respectively. Results showed that by adding up to 2.5 wt% nano-SiO2, due to the formation of CaO·MgO·2SiO2 (Diopside), 2CaO·MgO·2SiO2 (Akermanite), and CaO·MgO·SiO2 (Monticellite) phases, physical and mechanical properties were enhanced. But the highest flexural strength value is achieved for 1 wt% nano-SiO2 containing sample.  相似文献   

16.
《Ceramics International》2016,42(14):15658-15663
In this work the effect of nano- and microZrO2 addition on the densification and hydration resistance of MgO–CaO refractories was investigated. 0, 2, 4, 6 and 8 wt% ZrO2 was added to MgO–CaO refractories that contain 35 wt% CaO. The crystalline phases and microstructure characteristics of specimens sintered at 1650 °C for 5 h in an electric furnace were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The physical properties are reported in terms of bulk density, apparent porosity and hydration resistance. Results show that with addition of ZrO2 the bulk density and hydration resistance of the samples increased while apparent porosity decreased. Also the hydration resistance of the samples was appreciably improved by the addition of ZrO2 due to its effect on decreasing the amount of free CaO in the refractories, promotion of densification as well as modification of the microstructure. Also it revealed that the nanoZrO2 addition was more effective than microZrO2 due to its higher activity.  相似文献   

17.
《Ceramics International》2017,43(16):13290-13298
The mineral trioxide aggregate (MTA) is Portland type cement whose main application in dentistry is retrograde filling. The purpose of this study was to analyze hydration reactions and physicochemical properties of a new tricalcium-dicalcium silicate-based cement containing nanocrystalline hydroxyapatite (nHAp) and calcite. The new formulation was compared with Biodentine™ and MTA-Angelus™ as control samples.Hydration reactions were monitored by Raman spectroscopy, X-ray diffraction, radiopacity, pH, setting time, and compressive strength. The compressive strength reaches its higher value at 7 days following the sequence: Biodentine™ (104.8 MPa) > Cement + 5% nHAp (59 MPa) > MTAAngelus™ (27.3 MPa), in agreement with the pH values measured at 24 h: Biodentine™, Cements + nHAp or + calcite (10.6–11.6) > MTA-Angelus™ (9.7). Mean setting times was around 30 min and no significative differences (p = 0.0001) were observed. In the Biodentine™ control samples, Ca3SiO5 diminishes until disappear at 28 days of hydration. On their turn, calcium silicate hydrate (CSH) increases continuously in the range of time analyzed. The present results suggest that the physicochemical properties were improved for the new cement with nanosized hydroxyapatite nanoparticles and relevant information on chemical properties is of valuable importance for testing predictive models for Biodentine™ and MTA-Angelus™.  相似文献   

18.
A method of preparation of multi-impregnated pitch-bonded Egyptian dolomite refractory brick for ladle furnace is described. Brick samples were prepared from blend of calcined dolomite mineral and coal tar pitch. The blend was hot mixed and pressed under a compression force up to 151 MPa. Green bricks were baked for 2 h at temperatures up to 1000 °C. Voids in the baked bodies were filled with carbon by multiple impregnations using low-softening point coal tar pitch. Each impregnation step (30 min) was followed by calcination at 1000 °C. Brick samples containing 8–12 wt.% coal tar pitch binder and pressed under 108–151 MPa acquired quantify crushing strength. However, multi-impregnating favored the mechanical strength of the baked brick samples and improved their hydration resistance (>45 days). Dolomite brick samples containing 10 wt.% coal tar pitch and pressed at 108 MPa gave high hydration resistance (more than 60 days in normal condition) compared to the hydration resistance of the commercial bricks (30 days). The prepared brick samples have acceptable density, chemical stability, outstanding resistance and good mechanical properties would meet the requirements of Ladle furnace (LF) for steel making industry. In addition, estimation of production cost of the brick indicates it is competitive with the market price based on durability and service life time aspects.  相似文献   

19.
Camphene-based freeze casting technique was adopted to fabricate ZrB2–SiC porous ceramic with 3-dimensional (3D) pore network. ZrB2–SiC/camphene slurries (initial solid loading: 20 vol%, 25 vol% and 30 vol%) were prepared for freeze casting. Regardless of initial solid loading, the fabricated sample had dense/porous dual microstructure. The thickness of dense layer was about 200–300 μm. The microstructures of ZrB2–SiC porous ceramics were significantly influenced by the initial solid loading, which determines the pore size, porosity and mechanical properties of the final products.  相似文献   

20.
Activation effects on carbon films, derived from commercial aromatic polyimide films (Kapton, DuPont), in CO2 atmosphere at 1203 K on capacitance properties were studied. Two thicknesses of polyimide films were used: 7 and 25 μm. Pore formation during the activation process progresses in two steps due to the existence of a denser surface layer and a more porous core material. In the first step micropores are opening in the dense surface region of the material with average pore diameter smaller than 1 nm. During the second step, mesopores start opening, while micropore volume remains constant with the average micropore diameter of over 1 nm, producing bimodal texture. The first step finishes after 30 min for the thinner samples while for the thicker samples it finishes after 60 min of activation. As a consequence of such textural changes during activation, the thicker sample has a maximum areal capacitance of 0.35 F/cm2. The thinner sample activated for 30 min has a maximum volumetric capacitance of 220 F/cm3 and achieves a maximum gravimetric capacitance of 240 F/g when the texture becomes bimodal after 240 min of activation. These results confirm that activation of carbonized Kapton films gives promising electrode materials for supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号