首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-dimensional model is developed for the determination of devolatilization time and char yield of cylindrical wood particles in a bubbling fluidized bed combustor. By using the concept of shape factor, the model is extended to particles of cuboid shape. The model prediction of the devolatilization time agrees with the measured data (present and those reported in the literature) for cylindrical and cuboidal shaped particles within ±20% while the char yield is predicted within ±17%. Influence of some important parameters namely, thermal diffusivity, external heat transfer coefficient and shrinkage, on the devolatilization time and char yield are studied. Thermal diffusivity shows noticeable influence on devolatilization time. The external heat transfer coefficient shows little influence beyond a value of 300 W/(m2 K). However particle shrinkage shows negligible effect on the devolatilization time but has a significant influence on the char yield.  相似文献   

2.
Casuarina equisetifolia, a hard wood, and a popular energy crop in many tropical countries, was investigated experimentally for its char fragmentation in a laboratory scale atmospheric bubbling fluidized bed combustor. The effect of fuel shape and size on wood char fragmentation was studied. Wood particles of spherical, cylindrical (aspect ratio of 1), and cubical shapes of different sizes ranging from 10 to 25 mm were used in the experiments. Fragmentation of wood char was quantified in terms of various parameters, such as Number of Fragments (NF), Percentage of Fragmentation Events, Frequency of Fragmentation, Timing interval of Fragmentation, Size distribution of char and Fragmentation Index (FI). Also, qualitative observations on the evolution of char in terms of deformation, cracks and surface texture are discussed. It was observed that Casuarinaequisetifolia wood of sizes greater than 15 mm, of all shapes undergoes primary fragmentation during the devolatilization phase. Furthermore, chars fragment at the early stages (1st or 2nd quarter) of the char combustion phase, underscoring the significance of the phenomenon in fluidized bed combustion. For all the shapes of wood considered, there appears to be a cut-off size of the initial wood, below which its char certainly undergoes fragmentation. It was observed that the average char particle size at any instance during its combustion falls in a narrow range of 3.7–6.9 mm, 3–6.6 mm and 3–9.5 mm for spherical, cylindrical and cubical wood particles, respectively. Wood of initially cylindrical shape undergoes extensive fragmentation when compared with spherical and cubical shapes.  相似文献   

3.
Single particle devolatilization followed by combustion of the residual coal char particle has been analyzed in a batch-fluidized bed. The kinetic scheme with distributed activation energy is used for coal devolatilization while multiple chemical reactions with volume reaction mechanism are considered for residual char combustion. Both the models couple kinetics with heat transfer. Finite Volume Method (FVM) is employed to solve fully transient partial differential equations coupled with reaction kinetics. The devolatilization model is used to predict the devolatilization time along with residual mass and particle temperature, while the combined devolatilization and char combustion model is used to predict the overall mass loss and temperature profile of coal. The computed results are compared with the experimental results of the present authors for combustion of Indian sub-bituminous coal (15% ash) in a fluidized bed combustor as well as with published experimental results for coal with low ash high volatile matter. The effects of various operating parameters like bed temperature, oxygen mole fraction in bulk phase on devolatilization time and burn-out time of coal particle in bubbling fluidized bed have been examined through simulation.  相似文献   

4.
M. Sreekanth  Ajit Kumar Kolar 《Fuel》2010,89(5):1050-1055
This work presents the results of experiments conducted to determine the mass loss characteristics of a cylindrical wood particle undergoing devolatilization under oxidation conditions in a bubbling fluidized bed combustor. Cylindrical wood particles having five different sizes ranging from 10 to 30 mm and aspect ratio (l/d = 1) have been used for the study. Experiments were conducted in a lab scale bubbling fluidized bed combustor having silica sand as the inert bed material and air as the fluidizing medium. Total devolatilization time and mass of wood/char at different stages of devolatilization have been measured. Studies have been carried out at three different bed temperatures (Tbed = 750, 850 and 950 °C), two inert bed material sizes (mean size dp = 375 and 550 μm) and two fluidizing velocities (u = 5umf and u = 10umf). Devolatilization time is most influenced by the initial wood size and bed temperature. Most of the mass is lost during the first half of the devolatilization process. There was no clear influence of the fluidization velocity and bed particle size on the various parameters studied. The apparent kinetics estimated from the measured mass history show that the activation energy varied narrowly between 15 and 27 kJ/mol and the pre-exponential factor from 0.11 and 0.45 s−1 for the wood sizes considered.  相似文献   

5.
The carbon conversion of different solid fuels (i.e. beech wood, fir wood, bituminous coal) was investigated in the freeboard of a laboratory-scale fluidized bed combustor by in situ tunable diode laser absorption spectroscopy. A room temperature continuous wave InGaAsSb/AlGaAsSb quantum well ridge diode laser emitting at 2.3-2.35 μm was wavelength tuned at 300 Hz to determine simultaneously CH4 and CO during devolatilization and char combustion in situ 10 mm above the fuel particles. The lower detection limit was 0.2 vol% (5000 ppm m) for both species. In addition, CO, CO2 and O2 were determined ex situ by conventional methods.The experimental results obtained for the bituminous coal were compared to a detailed chemical kinetic model.The in situ measurements proved to be advantageous compared to conventional ex situ concentration measurements. The calculations confirm the determination of the primary products of solid fuel combustion during devolatilization and char combustion. A rather simple model for the devolatilization products was proven to describe well the release rates of CH4 and CO for the bituminous coal.  相似文献   

6.
This paper summarises the experimental and modelling work carried out for the variation of bed ignition temperature of a fluidized bed combustor with the char particle diameter and the fluidizing velocity. A lignite char was used and its reactivity was represented using data from Field (1967) and Turnbull and Davidson (1984). The modelling involved solving the steady state heat balance around the fluidized bed combustor at the ignition temperature. A correlation of the total area of char ignited per unit bed mass was determined as a function of the char particle diameter and the fluidizing velocity. This correlation was used to determine the ignition temperature of the fluidized bed combustor operating at different conditions. The fluidized bed combustor heat balance was then solved for the bed ignition temperature which was influenced by both the rate of heat loss from the bed and the reactivity of the char. A sensitivity analysis suggests that the chemical rate reaction coefficient is the most prominent variable when determining the ignition temperature of a fluidized bed combustor.  相似文献   

7.
Experiments were carried out in a laboratory fluidized bed (FB) to characterize the devolatilization behavior of wood and various wastes at temperatures applicable to FB gasification and combustion, i.e. 750-900 °C. The fuels tested were pellets made of wood, meat and bone meal, and compost (from municipal solid wastes), as well as dried granulates of sewage sludge (DSS). Determination of yields of char, condensate and light gas, as well as the composition of the gas and the time of devolatilization during the pyrolysis of single fuel batches was made. A simple model was developed to analyze the mode of conversion of a single wood pellet and DSS granulate, giving insight on the controlling mechanisms during devolatilization. The devolatilization kinetics of DSS was determined by tests using fine granulates. The model was successfully applied to simulate the conversion of large DSS granulates and wood pellets under the whole range of temperatures analyzed.  相似文献   

8.
A model of an atmospheric bubbling fluidized bed combustor operated with high-volatile solid fuel feedings is presented. It aims at the assessment of axial burning profiles along the reactor and of the associated temperature profiles, relevant to combustor performance and operability. The combustor is divided into three sections: the dense bed, the splashing region and the freeboard. Three combustible phases are considered: volatile matter, relatively large non-elutriable char particles and fine char particles of elutriable size. The model takes into account phenomena that assume particular importance with high-volatile solid fuels, namely fuel particle fragmentation and attrition in the bed and volatile matter segregation and postcombustion above the bed. An energy balance on the splashing zone is set up, taking into account volatile matter and elutriated fines postcombustion and radiative and convective heat fluxes to the bed and the freeboard.Results from calculations with a high-volatile biomass fuel indicate that combustion occurs to comparable extents in the bed and in the splashing region of the combustor. Due to volatile matter segregation with respect to the bed, a significant fraction of the heat is released into the splashing region of the combustor and this results in an increase of the temperature in this region. Extensive bed solids recirculation associated to solids ejection/falling back due to bubbles bursting at bed surface promotes thermal feedback from this region to the bed of as much as 80-90% of the heat released by afterburning of volatile matter and elutriated fines. Depending on the operating conditions a significant fraction of the volatile matter may burn in the freeboard or in the cyclone.  相似文献   

9.
Analysis of devolatilization of predried large coal particles in fluidized beds requires consideration of both the chemical kinetics of coal decomposition and transport processes. Models available either assume the devolatilization particle to be isothermal (whereas it may be shown that, in general, large temperature gradients may exist within the particle) or require extensive numerical integration procedures. This Paper describes a model which permits formulation of analytical and easy-to-use equations for the estimation of the devolatilization history of a large predried coal particle in a fluidized bed. The model predictions are compared with experimental data collected for Mississippi lignite. A correlation is proposed for the estimation of the total devolatilization time. The analytical solutions presented may be used with ease in coupling the devolatilization process to the other phenomena, such as drying and/or combustion of volatiles and residual char, occuring during fluidized bed combustion of coal.  相似文献   

10.
A mathematical model of biomass gasification in a fluidized bed has been developed. It considers axial variations of concentrations and temperature in the bubble and emulsion phases. The mass balance involves instantaneous oxidation and equilibrium devolatilization of the biomass, kinetics of solid-gas gasification reactions as well as of gaseous phase reactions and interphase mass transfer and gas convection. The energy balance is solved locally for each vertical volume element, and globally on the reactor by iteration on the temperature at the bottom of the bed. Three parameters have been adjusted based on the experimental results: the heat transfer coefficient at the wall, the weighting of the kinetics of the water-gas shift reaction and the fraction of biomass carbon remaining as char after devolatilization. The model is used to simulate a pilot scale (50 kg/h) biomass gasifier, and its predictions compared to experimental measurements. The temperature and gaseous concentrations are estimated with good accuracy for the experiments using a wood feedstock, except for the concentration of hydrogen which is overestimated.  相似文献   

11.
Comminution characteristics of Korean anthracite in a CFB reactor   总被引:1,自引:0,他引:1  
J.M Lee  J.S Kim  J.J Kim 《Fuel》2003,82(11):1349-1357
Comminution characteristic of Korean anthracite has been determined with operation conditions in a laboratory scale circulating fluidized bed (CFB) combustor. The fragmentation of the anthracite occurs explosively, and generates lots of fine particles at an early stage of devolatilization. The fragmented particles continue to be reduced with generation of the fine particles during an attrition stage in the CFB combustor. With an increase of operation temperature, the coal shows a high degree of fragmentation and generation of fine particles in the CFB reactor. The particle fragmentation occurs actively as its size and Hard Grove Index (HGI) increase. The attrition is also affected with particle size and HGI of the coal. The initial surface crack and the fine clusters on the particle surface are found to be reasons for explosive fragmentation and for generation of fine particles during devolatilization and combustion in the CFB reactor.  相似文献   

12.
The performance of a fluidized bed combustor is adversely affected by the entrainment of fine coal and char particles. The size distribution of the entrained particles is an indicator of the combustor's performance. Size analysis data may be helpful for optimizing the operating conditions.

An optical image analysis system (TAS, Leitz) was used to analyze the size distribution of char particles elutriated from a small fluidized bed after one single pass. The TAS system discriminates between highly reflecting char particles and low-reflectance ash. The maximum size of the chars produced in these experiments was about 50 μm, almost independent of the type of coal.  相似文献   


13.
The combustion of a char in the 41 mm ID riser of a laboratory circulating fluidized bed combustor has been investigated at different air excesses and rates of solids (char and sand) circulating in the loop. Riser performance was characterized by an axial oxygen concentration profile as well as by the overall carbon content and particle size distribution. The proposed model accounts for carbon surface reaction, intraparticle and external diffusion, and attrition. External diffusion effects were relevant in the riser dense region where char was potentially entrapped in large clusters of inert solids. Experimental data and results of the model calculations are in satisfactory agreement.  相似文献   

14.
Coal devolatilization studies were carried out with a pressurized laboratory fluidized-bed reactor. The tests showed the behaviour of caking and noncaking coals during rapid heating in a fluidized bed. Small samples of coal were injected into a hot bed of char; the off-gas was sampled and analysed; and the char and agglomerates produced were examined and characterized. Data obtained on the variation of gas evolution rates with time were used to predict the duration of the plastic or sticky phase during transition of the coal to char. All tests were conducted at 1.013 MPa (10 atm) pressure; bed temperature and coal particle size were varied.  相似文献   

15.
A steady-state model has been developed to simulate the North Carolina State University pilot-scale fluidized bed coal gasification reactor. The model involves instantaneous devolatilization of coal at the top of the gasifier (freeboard region) and char combustion and gasification in the fluidized bed. A two-phase (emulsion-dilute gas) representation of the fluidized bed incorporates the phenomena of jetting, bubbling, slugging, and mass and heat transfer between phases, and enables the prediction of individual species flow rates and temperature profiles within the bed. The model has been successfully used to simulate the gasification of a devolatilized Western Kentucky bituminous coal and a New Mexico subbituminous coal and to predict effects of various operating parameters on key gasifier performance variables.  相似文献   

16.
流化床燃烧石油焦N_2O排放特性   总被引:1,自引:1,他引:0       下载免费PDF全文
通过在一小型流化床试验台上进行石油焦的燃烧试验 ,阐述了N2 O和NO形成与分解机理 ,模拟研究了N2 O的排放特性 .采用不同程度脱去挥发分的石油焦颗粒 ,研究脱挥发分的程度对N2 O形成的影响 ,脱挥发分的温度越高 ,即脱挥发分的程度越高 ,石油焦氮形成N2 O的量越少 ,这表明石油焦挥发分氮形成N2 O量高于相应石油焦焦炭氮燃烧产生的N2 O量 .燃料燃烧过程中 ,NO形成比较均匀 ,而N2 O形成比较复杂 ,燃料氮向NO的转化率随脱挥发分温度升高而增加 ,而向N2 O的转化率则有一临界脱挥发分温度点 .  相似文献   

17.
A model based on the Monte Carlo approach was developed to simulate the mixing and combustion behavior of a shallow coal-limestone fluidized bed combustor. The model involved the coupling of two sub-models: a combustion sub-model based on the two-phase concept of fluidization and a mixing sub-model based on our previously developed dynamic mixing model. The combustion sub-model considered both the volatile and char combustion. It assumed that the combustor consisted of three distinct phases, i.e., jet, bubble and emulsion, with combustion occurring only in the emulsion phase. The mixing sub-model considered the upward or downward movement of a coal particle in the bed as being governed by certain probability laws; these laws were, in turn, affected by the bubbling hydrodynamics. In all, the combustor simulation model took into consideration the effects of coal feed rate, coal size distribution, limestone size, air flow rate and combustor temperature on the combustor behavior. The simulation results included the dynamic response of coal concentration profile, coal size distribution, coal particle elutriation rate as well as the mixing status between the coal and limestone particles.  相似文献   

18.
S. Gerber  M. Oevermann 《Fuel》2010,89(10):2903-2452
We present an Eulerian multiphase approach for modeling the gasification of wood in fluidized beds. The kinetic theory of granular material is used to evaluate constitutive properties of the dispersed solid phase. Comprehensive models for wood pyrolysis, char gasification and homogeneous gas phase reactions are taken into account. The dispersed solid phase within the reactor is modeled as three continuous phases, i.e., one phase representing wood and two char phases with different diameters. In contrast to most other studies we investigate a fluidized bed which consists of wood and char particles without additional inert particles such as limestone or olivine. 2D simulation results for a lab-scale bubbling fluidized bed reactor are presented and compared with experimental data for product gas and tar concentrations and temperature. We investigate the influence of two different classes of parameters on product gas concentrations and temperature: (i) operating conditions such as initial bed height, wood feeding rate, and reactor throughput and (ii) model parameters like thermal boundary conditions, primary pyrolysis kinetics, and secondary pyrolysis model. Two different pyrolysis models are implemented and are compared against each other. The numerical results indicate (i) a relatively low influence of the investigated operating conditions on the main product gas components, (ii) a high sensitivity of main product gas components CO and CO2 on the thermal boundary condition, and (iii) a very strong influence of operating conditions and model parameters on the tar content in the product gas.  相似文献   

19.
海藻生物质颗粒流化床燃烧试验研究   总被引:3,自引:1,他引:3       下载免费PDF全文
王爽  姜秀民  王谦  吉恒松 《化工学报》2013,(5):1592-1600
在小型流化床试验台上研究了海藻颗粒(条浒苔与马尾藻)的流化床燃烧。海藻在流化床内的挥发分析出燃烧时间都在1 min左右。条浒苔颗粒在流化床中燃烧先进行脱水和挥发分的燃烧,接着发生焦炭燃烧,其燃烧过程符合缩核模型,炭核由外向内逐层燃烧,而灰层半径几乎不变。但马尾藻颗粒由于挥发分的大量快速释放而迅速膨胀破碎成屑。另外通过对条浒苔颗粒及不同燃烧时间后收集的焦炭颗粒剖面的SEM扫描电镜观察,发现随着燃烧的进行,颗粒内孔隙增大,微孔表面粗糙。进一步详细研究了两种海藻颗粒(条浒苔与马尾藻)在流化床内单次投料下的燃烧。随着床温的升高,条浒苔释放NOx相对浓度增加,CO相对浓度减少。而马尾藻释放气体中SO2与NOx含量相对条浒苔有所增加;随着床温的升高,CO相对浓度减少。床温的升高使得床内传热速率加快,两种海藻挥发分的析出提前,燃尽时间缩短。风速、床高的升高使得两种海藻燃烧容易,燃尽时间缩短。  相似文献   

20.
A model for the devolatilization of coal in a non-combusting fluidized bed is proposed. Previous studies have either considered devolatilization as a non-rate process or assumed the devolatilization coal particle as isothermal. The assumption of an isothermal particle requires the heat transfer Biot number ?0.02. In view of the larger Biot numbers predicted using existing fluidized bed gas-solid heat exchange correlations and reported values for thermophysical properties, the present model considers the devolatilizing particle to be, in general, non-isothermal. The temperature profiles are computed from the analytical solution of the one-dimensional spherical coordinate unsteady heat transport equation with a convective boundary condition. The temperatures are then used in the non-isothermal coal decomposition kinetic expression proposed by Anthony et al., integrated over the particle to obtain the fractional volume average devolatilization at any given time. Parametric studies show a chemical kinetics controlled regime for small particles, a heat transfer controlled regime for larger particles and a mixed regime for intermediate particle sizes. The extent of the mixed regime depends on the type of coal as well as the operating conditions. The model results are also compared with the fluidized CH4 and CO evolution data reported in the literature for various particle sizes and different temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号