首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Chromium-containing stainless steel (SS) is a prospective material for use as an interconnect in solid oxide fuel cells (SOFCs). However, during operations at high temperatures, the growth of oxide scales causes the performance of the interconnect and SOFC as a whole to deteriorate. The coating of SS 446 with a conducting perovskite is a potential method of slowing the growth of oxide scale and, therefore, improving overall SOFC performance. In the present research, the structural characterization of a pure LaCrO3 thin film on the SS 446 substrates has been performed as a model material that can be used as a barrier coating for the metallic interconnect. The deposition of an amorphous La-Cr-O thin film on SS 446 was performed using radio-frequency (rf) magnetron sputtering. The deposited amorphous film was annealed in air to form the desired perovskite phase. The film underwent an amorphous to LaCrO4 phase transition during annealing at 500°C with further transformation to LaCrO3 orthorhombic phase during annealing at 700°C. A self-organized dendritic structure was reported as a result of the perovskite-phase formation. Although formation of various oxides, such as Fe2O3 and Fe3O4, was observed during the annealing of uncoated SS 446 in air, the coating of SS 446 surface with LaCrO3 film prevented formation of various oxide phases at the interconnect surface. The structural characterization of the films and SS 446 surfaces was accomplished using scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffractometry, micro-Raman spectroscopy, and nanoindentation.  相似文献   

2.
The vaporization of LaCrO3(s) and samples of the composition LaCrO3+ La2O3 was investigated in the temperature range of 1887-2333 K by Knudsen effusion mass spectrometry using Knudsen cells made of tungsten lined completely with iridium. The species Cr(g), CrO(g ), CrO2(g), and LaO(g) were identified in the vapor. Their partial pressures were determined by calibration with pure platinum solid. The thermodynamic activity of Cr2O3, a cr2o3 in LaCrO3 for the Cr203-poor phase boundary of this phase was In aCr2o3= -(17953/T) - 0.485 (temperature T given in K) for the temperature range of the measurements with a probable overall error of ± 13%. The following values and temperature dependence of ΔG°f,T resulted for the formation of LaCrO3(s) according to the reaction 0.5Cr2O3(s) + 0.5La2O3(s) → LaCrO3(s): ΔG°f,2100= -78.9 ± 1.1 kj/mol, Δ H°f,298= -76.8 ± 5.2 kj/mol, and ΔG°r(kJ/mol) = -74.7 - 0.00202 T . Computations for the vaporization of LaCrO3 were conducted to show the volatility of this material in different atmospheres at high temperatures.  相似文献   

3.
Ceramic Fuel Cells   总被引:22,自引:0,他引:22  
A ceramic fuel cell in an all solid-state energy conversion device that produces electricity by electrochemically combining fuel and oxidant gases across an ionic conducting oxide. Current ceramic fuel cells use an oxygen-ion conductor or a proton conductor as the electrolyte and operate at high temperatures (>600°C). Ceramic fuel cells, commonly referred to as solid-oxide fuel cells (SOFCs), are presently under development for a variety of power generation applications. This paper reviews the science and technology of ceramic fuel cells and discusses the critical issues posed by the development of this type of fuel cell. The emphasis is given to the discussion of component materials (especially, ZrO2 electrolyte, nickel/ZrO2 cermet anode, LaMnO3 cathode, and LaCrO3 interconnect), gas reactions at the electrodes, stack designs, and processing techniques used in the fabrication of required ceramic structures.  相似文献   

4.
Chemical stability and cation stoichiometry determine the applicability of LaCrO3 as a high-temperature oxide electrode. A model for the behavior of acceptor-doped LaCrO3, as a function of oxygen activity is proposed. The model is in agreement with experimental data on Mg-doped LaCrO3. Stability regimes and compensation mechanisms at various oxygen activities and temperature are presented.  相似文献   

5.
Ultrafine La(Ca)CrO3 (LCC) powder was prepared through the glycine–nitrate gel combustion process. It was shown for the first time that the use of relatively inexpensive CrO3 as a starting material for chromium has potential for the bulk preparation of sinter-active LCC powder. As-prepared powder, when calcined at 700°C, resulted in LCC along with a small amount of CaCrO4. The calcined powder was found to be composed of soft agglomerates with a particle size of ≈70–290 nm. The cold pressing and sintering of the calcined powder at 1200°C resulted in the mono-phasic La0.7Ca0.3CrO3 with density ≈98% of its theoretical value. This is the lowest sintering temperature ever reported for La0.7Ca0.3CrO3. The conductivity of the sintered La0.7Ca0.3CrO3 at 1000°C was found to be ≈57 S/cm in air. The sintering and electrical behavior achieved for La0.7Ca0.3CrO3 may find application as an interconnect material for high-temperature solid oxide fuel cells if problems with chemical expansion and poor conductivity in fuel can be overcome.  相似文献   

6.
Paste samples of tricalcium aluminate alone, with CaCl2, with gypsum, and with gypsum and CaCl2 were hydrated for up to 6 months and the hydration products characterized by SEM, XRD, and DTA. Tricalcium aluminate hydrated initially to a hexagonal hydroaluminate phase which then changed to the cubic form; the transformation rate depended on the size and shape of the sample and on temperature. The addition of CaCl2 to tricalcium aluminate resulted in the formation of 3CaO · Al2O3· CaCl2·10H2O and 4CaO · Al2O3· 13H2O, or a solid solution of the two. The chloride retarded the formation of the cubic phase 3CaO · Al2O3· 6H2O; the addition of gypsum resulted in the formation of monosulfoaluminate with a minor amount of ettringite. When chloride was added to tricalcium aluminate and gypsum, more ettringite was formed, although 3CaO · Al2O3· CaSO4· 12H2O and 3CaO · Al2O3· CaCl2· 10H2O were the main hydration products.  相似文献   

7.
The possibility of eliminating finger or vermicular growth of α-Al2O3 particles obtained by calcination of boehmite was examined. Heterogeneous precipitation of boehmite in a well-dispersed θ-Al2O3 suspension was first prepared, in which the mass ratio of boehmite to θ-crystallite was evaluated to form agglomerates of similar sizes that will form α-Al2O3 crystallites of <100 nm in diameter. θ- to α-phase transformation of alumina experiences a nucleation and growth mechanism, with the critical size of nucleation being ∼25 nm for θ-Al2O3 and the size for accomplishment of transformation followed by finger growth being ∼100 nm. Hence, fabricating agglomerates that would form α-Al2O3 crystallites with sizes <100 nm accompanied with appropriate thermal treatments can be a method for obtaining α-Al2O3 crystallites free of finger growth. It is found that proper preparation of the agglomerate with appropriate size may initiate a simultaneous and lower temperature θ- to α-Al2O3 phase transformation for such powder systems, substantially limiting the mass transfer among the newly formed α-Al2O3 particles. Moreover, α-Al2O3 crystallites free of finger growth can be obtained.  相似文献   

8.
Alumina was found to react with sodium fluoride on fusion to produce sodium aluminate and cryolite according to the reaction 6NaF + 2Al22c3= 3NaA102+ Na3A1F6. An insoluble sodium aluminate phase was observed under the polarizing microscope in samples quenched from as high as 1400°C. The equilibrium crystallization temperature of sodium fluoride in the presence of solid sodium aluminate was found to be slightly depressed with added alumina. A maximum lowering of 6°C was found for a starting alumina content of 5.4%. Further alumina additions resulted in the secondary precipitation of β-Al2O3. The shallow depression of the sodium fluoride crystallization temperature and the observed limited alumina solubility are attributed to the formation of cryolite. The composition of the liquid in equilibrium with sodium aluminate and sodium fluoride or sodium aluminate and β-alumina is represented in terms of the pseudo-ternary system NaF-Al2O3-Na3A1F6.  相似文献   

9.
The free energy of reaction for the formation of mullite from its oxide components was derived from equilibrium studies in the system CoO-Al2O3-SiO2. Within this system there appears, at solidus temperature in a certain composition area, the phase assemblage mullite + silica + spinel (= cobalt aluminate) + liquid. Determination of the oxygen pressure of a gas phase at which metallic cobalt precipitates from this phase assemblage and from the phase assemblage spinel (= cobalt aluminate) + corundum in the system CoO-Al2O3 permits calculation of ΔG° for the reaction 3Al2O3+ 2SiO2= Al6Si2O13. The value obtained at 1422°C is -5.8 kcal.  相似文献   

10.
Two types of barium aluminate binders were prepared by heat treatment of barium aluminate precursors, synthesized by using solution processes, at low temperatures ( T < 500°C). One was barium monoaluminate (BaAl2O4), and the other was barium aluminate binder (BAH binder) composed of amorphous phase, barium aluminate monohydrate (BaAl2O4·H2O), and BaAl2O4. The setting time of the BAH binder was controlled by adjusting the heat-treatment temperature of the BAH binder precursor. The addition of the synthesized BaAl2O4 powders to Al2O3 powders improved the bending strength of Al2O3 matrix green bodies. The synthesized BaAl2O4 powders led to the in situ forming of barium hexaaluminate (BaO· x Al2O3, x = 6.9: BA6) platelets in the matrix by reacting with Al2O3 during sintering. The formed BA6 platelets inhibited the grain growth of the matrix Al2O3 grains.  相似文献   

11.
The system CaO–chromium oxide in air is reinvestigated and the existence of intermediate phases with chromium in oxidation states >3+ (Ca5Cr3O12, Ca3(CrO4)2, and Ca5(CrO4)3) confirmed. Under reducing conditions these phases are unstable. A metastable, polymorphic form of calcium chromite, δ -CaCr2O4, is observed. In the CaO-rich section of the CaO–Al2O3–Cr2O3 system a ternary intermediate phase, chrome-haüyne, Ca4[(Al,Cr3+)6O12](Cr6+O4), coexists with calcium chromate and calcium aluminate phases. In air, low melting temperatures are preserved in all assemblages containing calcium chromate phases. Under reducing conditions a new ternary phase, Ca6Al4Cr2O15, coexists with CaO, CaCr2O4, chrome-haüyne, and calcium aluminate phases. The influence of chromium oxide additions on the solidus temperatures of the CaO–Al2O3 system is insignificant.  相似文献   

12.
High-temperature electrical conductivity, Seebeck coefficient, and thermal conductivity measurements were used to study the effects of different cation substituents on electrical and thermal transport in YCrO3 and LaCrO3. The substitution of divalent Ca and Sr for Y and La, respectively, resulted in the formation of small polarons as charge carriers. The additional substitution of Mn for Cr resulted in the formation of a second charge carrier associated with the Mn. The electrical conductivity results were consistent with thermally activated transport by hopping of a temperature-independent carrier concentration. The activation energies were 0.20 and 0.12 eV for (Y,Ca)CrO3 and (La,Sr)CrO3, respectively, and increased to about 0.50 eV with the substitution of Mn for Cr. The Seebeck coefficient increased linearly with temperature and decreased with substituent concentration for both (Y,Ca)CrO3 and (La,Sr)CrO3. The substitution of Mn for Cr resulted in a Seebeck coefficient with a more complex dependence on temperature and substituent concentration. The thermal conductivity did not change significantly with either cation substitution or temperature.  相似文献   

13.
Highly reactive and nanocrystalline powders of LaCrO3based compositions, having the general formula La0.9Ca0.1Cr1− x M x O3−δ (0≤ x ≤0.1, and M=Al, Co, or Mg), suitable for solid-oxide fuel cell (SOFC) applications, have been synthesized using an auto-combustion technique with ammonium dichromate as the chromium source. Owing to very fine crystallite size (ranging from 10 to 50 nm) and the high reactivity of the powders (surface area as high as 25 m2/ g ), the sintering temperature reduces drastically and a highly dense, uniform, and fine-grained microstructure is obtained. A dramatic improvement in densification (nearly theoretical density) is observed for aluminum substitution, when sintered at as low a temperature as 1300°C. The microstructure shows a uniform distribution of grains having an average grain size of ∼0.5 μm. Depending on the substituent, the electrical conductivities of the sintered samples in air, at 1000°C, were found to be in the range of 10–45 S/cm, and are more than that of the values required for SOFC application. The thermal expansion coefficients, as obtained, are also comparable with the other SOFC cell components.  相似文献   

14.
Submicrometer powders of complex oxides were prepared via resin intermediates based on a starch type of organic precursor. A commercially available water-soluble starch derivative was (for the first time) used as the organic base for solution synthesis of ceramic powders. Calcination of the charred, fluffy, amorphous resins at a temperature below 600°C for 4 h yielded perovskite powders of Sr-doped LaMnO3 and Sr-doped La(Fe,Co)O3. Sr-doped LaCrO3 needed to be calcined above 750°C to ensure phase purity and to remove organic residue. Due to the low cost of starch derivatives, the process has the potential of being more economical than the commonly used Pechini's type process, which utilizes citric acid and ethylene glycol.  相似文献   

15.
Hexagonal anorthite (CaAl2Si2O8) has been prepared by hydrothermal processing of monocalcium aluminate and quartz at temperatures as low as 200°C. The successful development of this phase is dependent upon several processing parameters, including the hydration of the calcium aluminate precursor material to the hydrogarnet phase (Ca3Al2O6·6H2O) prior to hydrothermal treatment and the use of quartz as opposed to amorphous sources of SiO2. Quartz has partial solubility in the hydrogarnet lattice for additions up to 40 wt%. Increased SiO2 substitution has been shown to reduce the conversion of hydrogarnet to Ca4Al6O13·3H2O, thereby increasing its thermal stability and improving its strength characteristics at temperatures greater than 200°C. Quartz additions greater than 43 wt% lead to the formation of CaAl2Si2O8 as the sole reaction product. The moderate temperatures involved in forming this anhydrous material are an order of magnitude lower than those necessary to form this phase by melt crystallization, making it a true chemically bonded ceramic. The reaction can form a bonded matrix with strengths up to 40000 psi (280 MPa). Strengths are limited due to density changes during anorthite formation, but the matrix is thermally stable up to 1000°C.  相似文献   

16.
In this study, a dense strontium-doped lanthanum chromite (La0.8Sr0.2CrO3, LSC) thin layer was designed to protect a stainless-steel (SUS430) substrate from carbon deposition. The LSC layer was coated onto an SUS430 substrate by a dipping technique from a precursor solution of La, Sr and Cr nitrates, acetylacetone (acac), and 2-methoxyethanol. The effect of AcAc on the phase behavior and microstructure evolution of the LSC thin films was investigated. After being heat-treated at 800°C in air, the thin film was found to consist of perovskite LaCrO3, Mn1.5Cr1.5O4, and Cr2O3 phases. The addition of a chelating agent, acac, to the precursor solution led to a reduction in the formation of the strontium chromite (SrCrO4) phase. As a consequence, a thin film having a dense microstructure could be obtained. It was confirmed by Fourier-tranform Raman spectroscopic analysis and FESEM observations that the carbon deposited on the uncoated SUS430 substrate was amorphous with a spherical morphology. The LSC thin film thus obtained was found to be very effective at preventing carbon deposition when it was heat-treated under a dry hydrocarbon atmosphere.  相似文献   

17.
This study proposes a method to form ultrafine α-Al2O3 powders. Oleic acid is mixed with Al(OH)3 gel. The gel is the precursor of the Al2O3. After it is mixed and aged, the mixture is calcined in a depleted oxygen atmosphere between 25° and 1100°C. Oleic acid evaporates and decomposes into carbon during the thermal process. Residual carbon prevents the growth of agglomerates during the formation of α-Al2O3. The phase transformation in this process is as follows: emulsion →γ-Al2O3→δ-Al2O3→θ-Al2O3→α-Al2O3. This process has no clear θ phase. Aging the mixed sample lowers the formation temperature of α-Al2O3 from 1100° to 1000°C. The average crystallite diameter is 60 nm, measured using Scherrer's equation, which is consistent with TEM observations.  相似文献   

18.
The paste hydration of tricalcium aluminate (C3A) in the presence of organic compounds was investigated at several temperatures up to 75°C. The results confirm earlier hypotheses that the hexagonal calcium aluminate hydrates (principally C4AH13) which are first formed create a protective barrier around the remaining C3A and severely restrict further hydration. Above 30°C, conversion to C3AH6 breaks down this barrier and causes rapid hydration of C3A. Organic compounds retard the hydration of C3A by inhibiting the conversion reaction. Experiments with synthetic C4AH13 showed that organic molecules can form interlayer compounds, and it is considered that random sorption into the C3AH13 structure restricts the transformation to C3AH6. Other aspects of C3A hydration and of the reactivity of C4AH13 are also discussed.  相似文献   

19.
Electron-beam physical-vapor-deposited thermal barrier coatings consisting of ZrO2 stabilized by 7 wt% Y2O3 were investigated in regard to phase transformation after annealing. Free-standing ceramic layers were heat-treated in air, for up to 200 h, in the temperature range 1200°—1400°C and then analyzed by X-ray diffractometry. Based on information obtained from the {111} and {400} peaks, the phase composition and the Y2O3 content in the phases were calculated. At the start of transformation, small grains of a low-Y2O3 t phase and a c phase formed. After >30 h at 1300°C and at 1400°C, a mixture of a t phase deficient in Y2O3, an m phase, and a c phase formed after cooling, with the Y2O3 contents in the phases roughly predicted by the phase diagrams. The results of the present study are discussed here in detail and compared with data for plasma-sprayed coatings.  相似文献   

20.
Microstructural characterization of a high-Al2O3 substrate containing cofired thick-film tungsten metallization, with particular emphasis on the metal/ceramic interface, was conducted. The substrate contained tabular Al2O3 grains surrounded by a continuous calcium magnesium aluminum silicate glass containing particles of monoclinic ZrO2 and reduced rutile (TiO2- x ). The metal/ceramic adhesion was caused by mechanical interlocking between the W and Al2O3 grains by the glass phase which penetrated the porous W layers during sintering; there was no interfacial reaction or diffusion zone. The mechanical properties of the W metallization did not limit interfacial strength. Heat treatments of the substrate at 1400 K in air and under vacuum resulted in the devitrification of the intergranular glass. The most abundant devitrification product was anorthite (CaAl2Si2O8), accompanied by magnesium aluminate titanate, magnesium aluminate spinel, α-cristobalite (SiO2), and α-cordierite (Mg2Al4Si5O18). In addition, small rutile particles precipitated within the Al2O3 grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号