首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
常减压装置是原油深度加工的基础,同时也是炼油企业用能大户。针对国内某企业的常减压装置,应用流程模拟软件Aspen HYSYS,建立装置的换热网络模型。以加工原油性质、初馏塔、常压塔、减压塔模拟过程参数及常减压装置对产品质量的要求作为换热网络调整的基础参数,利用Aspen Pinch软件,对装置原有换热网络进行夹点分析,根据原油常减压装置内部冷、热物流特点,分析装置用能瓶颈,得出换热网络初底原油的最高理论换热终温。按照消除原换热物流跨夹点传热、中高温位热源多次合理利用、调整换热效率偏低的设备、现有设备布置变动小、投资省的原则,对换热网络进行改造优化。通过换热流程优化调整,初底油进常压加热炉温度由原来的278℃提高到288℃;降低常压炉加热负荷及燃料消耗,可节省加热炉负荷约60×10~4kcal/h,装置能耗降低约0.7kg标油/t,折合每年创造效益约126万元。  相似文献   

2.
李志杰 《中外能源》2011,16(Z1):14-16
以提高常压炉进料温度(原油换热终温)作为生产优化目标,应用Aspen Plus流程模拟软件,建立石家庄炼化Ⅰ套常减压装置流程模拟模型。通过对常压塔取热比例的优化,提高了原油换热终温,降低常压炉瓦斯消耗,进而达到降低装置能耗的目的。在指导实际生产过程中,通过降低塔顶冷回流流量,分别提高顶循、常一中和常二中的取热量。在保证各侧线产品质量和收率的情况下,各变量的调节如下:常顶冷回流流量由30t/h降至19t/h,常顶循流量由68t/h提到80t/h,常一中流量由112t/h提到120t/h,常二中流量由100t/h提到120t/h。原油换热终温提高了2℃,全年节约瓦斯气1470t,节能效益达到367.5万元。需要注意的是,装置操作过程中,由于处理量变化,会造成换热器的换热系数发生改变,因此,在实际改变各中段回流量过程中,应综合考虑各换热器的换热能力。同时,受原油加工量和原油性质变化导致的加工方案的改变,应经常对模型进行修正,否则会偏离优化目标。  相似文献   

3.
原油常减压蒸馏装置耗能极大,约占整个炼油厂炼油用能最的20%~30%,该装置能耗的高低取决于常减压蒸馏塔的操作水平和换热网络能最回收利用的水平.采用流程模拟技术和热集成技术.对常减压装置用能情况进行分析.综合考虑常,减压拔出率与装置用能之间关系,找出两者之间的最佳操作点.可以优化常减压装置操作并提高换热网络热回收水平.提高原油换热终温.降低常减压装置能耗。  相似文献   

4.
通过介绍20×104t/a异构脱蜡装置的用能情况,分析影响装置能耗的原因,并提出节能降耗优化措施。通过优化换热流程,充分利用装置内剩余的高温热和低温热以提高换热效率,并对加热炉空气预热器进行改造来提高加热炉热效率,降低装置的燃料气消耗。此外,优化工艺操作条件,保持装置在低能耗水平运行:在脱丁烷塔底和分馏塔加热炉之间增加四台换热器,并在异构冷低分和常压塔加热炉之间增加一台换热器;将预精制加热炉组合式空预器改成高效的板式空预器,分馏加热炉高温热烟气送入预精制加热炉的余热回收系统以进一步回收热量;优化循环氢纯度、氢油比和反应温度等工艺参数来降低装置能耗。优化改造后,分馏塔加热炉和常压塔加热炉进料温度分别提高了54℃和26℃,节省燃料气约35m3(标准)/h;预精制加热炉排烟温度降低了45℃,热效率提高至93%。装置整体综合能耗降低了12.66kg标油/t,预计每年可降低加工成本约628万元。  相似文献   

5.
水春贵 《中外能源》2013,(11):88-93
炼油工艺过程中,分馏系统的用能优化是换热网络能量优化的必然要求。以荆门石化3.5Mt/a常减压蒸馏装置为例,利用AspenP1us和AsDenEnergyAnalyzer软件,对常压塔以及换热网络的用能情况进行分析,提出能量优化利用思路:变工况条件下.首先优化分馏系统操作参数,再以此为条件,优化换热网络结构,才能实现整个网络的能量优化。利用AspenPIus软件的模型分析功能,确定了常压塔底汽提蒸汽、常压炉出口温度、中段回流以及侧线的最佳操作参数,为换热网络的夹点分析提供基础数据;在分馏塔操作优化基础上,对现有换热网络进行夹点分析,找出最优夹点温差,求得现有换热网络最高理论换热终温(317.7℃),为进一步优化换热网络提出了目标;通过建立现有换热网络的网格图,找出跨夹点换热的换热器(总共有5台),为换热网络的改进提供了方向。  相似文献   

6.
洛阳石化常减压装置经过了2005年从500×104t/a到800×104t/a的常压装置扩能改造、2008年的140×104t/a减压装置扩能改造,以及2009年西部轻油装置扩能改造过程,工艺水平不断提高。在节能降耗工作上,通过对电脱盐设施更新改造,将交直流电脱盐更新为脉冲电脱盐,脱后原油含盐量大幅减少,每年节省电能72×104kW。通过提高常渣350℃前拔出率,常压渣油中350℃前含量降低了1.8%,常渣量降低了8.1t/h,即降低进减压炉物料5832t/月。按照正常减压炉热效率折算,节约减压炉瓦斯量为28.45t/月,相当于每月节约27.03t标油。通过优化减压中段取热量,将换热终温由以前的298.5℃提高到现在的300℃,按照目前19500t/d原油加工量、常压炉燃料气消耗3100t/月计算,可节约燃料气约46.5t/月。通过更换脱盐注水泵、机泵冷却水全部回收和加强现场管理等手段,每小时可节约循环水60~80t,每年可节约循环水47×104~63×104t。装置改造后,2009年能耗为9.72kg标油/t原料。  相似文献   

7.
渣油加氢脱硫装置分馏塔优化模拟   总被引:1,自引:0,他引:1  
甘彬彬  胡瑞  公丕江 《中外能源》2010,15(11):75-78
以分馏塔进料温度、操作压力和汽提蒸汽流量为自变量,柴油侧线抽出量为因变量,经济效益为优化目标,通过Unisim软件对分馏塔系统工艺参数进行模拟。模拟结果显示,当分馏塔进料温度为349℃,汽提蒸汽流量为11.5t/h时,可抽出柴油量达32t/h,此为最佳效益工况,每年可增加效益2044万元,并且满足分馏塔水力学要求,亦为合理运行工况,此工况是提高分馏塔进料温度和增大汽提蒸汽量的协同作用的结果。模拟显示,单独提高分馏塔进料温度或增大汽提流量以及降低塔顶操作压力均有利于增加柴油收率和经济效益,但也会增加能耗,并受硬件条件制约,还会降低分馏塔设备的利用率。就大连石化300×104t/a渣油加氢脱硫装置分馏塔的优化而言,应在不超出限制条件下,以能否增加经济效益为判别依据,根据判断结果调整操作条件。  相似文献   

8.
延迟焦化装置用能分析及节能措施   总被引:2,自引:1,他引:1  
邹圣武 《中外能源》2009,14(6):95-99
分析了中国石化九江分公司延迟焦化装置的能耗构成特点及其影响的主要因素,通过采取加大装置处理量、提高原料换热终温和加热炉热效率、实施低温热回收综合利用、机泵增设变频和削级处理、提高水的回用率等工艺操作优化和设备改造措施,减少了燃料气、蒸汽、电和水的消耗。与设计值相比,装置能耗下降了468.16MJ/t,由此2008年1~10月份可增加2335万元以上的经济效益。  相似文献   

9.
侯和乾  王卫 《中外能源》2011,16(Z1):26-28
济南石化1号催化裂化装置通过流程模拟技术,寻找制约装置生产的瓶颈,以此来优化操作条件,降低能耗,离线培训操作人员,加强工艺人员对工艺机理的掌握,从而改善操作,提高企业的竞争能力。针对主分馏塔顶循环油-热媒水取热点取热能力不足的问题,利用模型,对分馏塔热负荷进行核算和优化,投用1号催化裂化装置主分馏塔顶循环与气体分馏装置的热联合,实现了主分馏塔低温热利用的最大化。热联合流程投用后,与使用蒸汽比较,1号气体分馏装置丙烷塔运转基本无异常;热媒水入装置温度下降3℃,热油入装置温度为145℃,重沸器出口温度为103℃,热油出装置温度为129℃,热油三通阀开度在40%~50%之间,满足装置操作要求。模拟优化后,气分装置丙烷塔底重沸器1.0MPa蒸汽消耗下降4.5t/h,1号催化裂化装置原料从油浆取热增加,油浆减少发汽量1.1t/h;顶循-循环水冷却器上水关小后,循环水消耗降低80t/h,全年实现综合效益338万元。  相似文献   

10.
茂名加氢裂化装置用能分析及节能途径   总被引:1,自引:0,他引:1  
邓茂广 《中外能源》2008,13(1):110-115
介绍了茂名石化公司加氢裂化装置在国内同类装置中的能耗状况,从设计和操作两方面分析了影响该装置能耗的因素,提出了该装置节能降耗应采取的措施,即使用炉管清灰剂和原料油阻垢剂技术降低燃料能耗;优化生产操作,降低分馏塔负荷;对中低温热源优化回收利用;对烟气热量进行回收;进行电耗分析并采取相应节电措施。通过改造,分馏炉燃料消耗降低0.2kg标油/t,加热炉燃料气单耗降低6.4kg/t,锅炉排烟温度降到200℃以下,自产蒸汽量增加了4.6t/h,锅炉平均热效率上升4.8个百分点,装置综合能耗由2004年的68kg标油/t降低到目前的37kg标油/t。  相似文献   

11.
赵剑涛 《中外能源》2011,16(3):83-87
长庆石化1.40Mt/a催化裂化装置加工减压渣油后,生焦量大、再生器超温,加工量降低(最低时仅为110t/h),轻质油收率低,仅为54.58%,烧焦损失大(由8.6%增大到9.56%),分馏塔底油浆系统结焦严重。通过提高原料油预热温度(最高提至260℃)和反应温度(一段反应温度由505℃提至518℃,最高时达到525℃),来提高进料的雾化效果和反应剂油比,通过降低分馏塔底温度(不大于355℃),新增回炼油串塔底流程、提高分馏塔底油浆线路线速、提高油浆外甩量(不低于5%,最高达到10%)、降低分馏塔底液面(不大于60%)和停留时间,以减缓分馏塔底结焦。设备方面,通过再生系统增设内取热器,增加取热能力,再生器中部增加防焦蒸汽环管,加大阻垢剂用量(提高至30~35mg/L),油浆线路结焦得到缓解。提出仍需改进和采取的措施,包括:强化一段提升管,停用二段提升管,停止油浆回炼,回炼油改进一段提升管;进一步提高剂油比,以改善产品分布,提高加工量,降低干气、焦炭产率;通过渣油加氢预处理来降低残炭含量,增加芳烃饱和度,实现催化原料轻质化,提高裂解性能。  相似文献   

12.
混炼含酸重质劣质原油的电脱盐技术选择探讨   总被引:1,自引:0,他引:1  
何志强 《中外能源》2009,14(10):74-77
茂名石化公司自混炼高酸原油后,原油脱前和脱后盐含量都明显提高,脱后平均盐含量达到7mg/L以上,2007年7月脱盐和脱水合格率分别仅为38.46%和20%。影响电脱盐过程的因素有电脱盐罐内部结构、破乳剂、脱盐温度、混合强度、脱盐罐内电场强度、油水界面控制、注水量等。根据国内同类装置经验,建议采取降低进厂原油的盐含量、水含量;加强生产操作管理,强化对电脱盐工艺各项指标的考核;将二级脱盐改为三级脱盐;采用超声波脱盐技术或高速电脱盐技术;针对原油特性加强对破乳剂的筛选和使用;进行电脱盐工艺条件的优化评定;采用热量前移方法对装置换热管网进行优化改造,提高原油进电脱盐罐温度等措施,以解决电脱盐后盐含量超标问题。  相似文献   

13.
分析了大庆石化公司丁辛醇装置工艺流程中用能优化的潜力,即可增没换热器,实现温度较低的精EPA与温度较高的粗EPA的换热,充分利用内部循环热能,同时可节约冷却水和加热蒸汽用餐。介绍了利用HYSYS流程模拟技术.通过采用定义虚拟组分来计算增设换热器换热面积的计算方法。根据模拟计算结果,采用换热面积为35m^2的新增换热器,每年节约1.3MPa蒸汽1×10^4t、冷却水28×10^4t。  相似文献   

14.
洛阳石化炼油装置节能潜力分析及优化措施   总被引:1,自引:0,他引:1  
魏文波 《中外能源》2010,15(9):102-105
对洛阳石化炼油装置节能潜力进行了分析,并针对电、蒸汽和燃料气三项节能重点制定了优化措施。节约燃料气的措施为:优化常减压换热网络;连续重整扩能消缺改造,停运制氢装置;降低加热炉排烟温度,提高加热炉整体效率;更换高活性催化剂,降低加氢反应温度。节约电的措施为:对催化裂化装置烟机及再生器旋分器进行检修改造,提高烟机效率;负荷富裕的往复式压缩机增设无级气量调节系统;更换高能耗变压器,降低无功损耗;对部分能力过剩的机泵进行节能改造。节约蒸汽的措施为:气分装置取消蒸汽;焦化装置大吹汽改用凝结水;关闭蜡油加氢装置循环氢压缩机反飞动阀;整合乙醇胺溶剂系统;优化蒸汽管网运行,停用部分蒸汽线。措施实施后,洛阳石化每年可节约燃料13705t,节约用电21786MW·h,节约蒸汽150800t,综合能耗实现57.87kg标油/t原油的目标。  相似文献   

15.
随着加工原油的轻质化,兰州石化公司5.OMt/a常减压装置初馏塔塔顶压力达到负荷上限(0.15MPa),处理能力最大仅为4.5Mt/a。为消除该瓶颈,即保证装置加工轻质原油时处理能力达到设计负荷5.OMt/a,对装置初馏塔系统进行了技术改造,包括对初馏塔、初顶油气一原油换热器、初馏塔顶空冷器、回流泵及加热炉火嘴等的改造。改造后,在加工重质原油时,装置处理量可达到16000t/d,在加工轻质原油时,处理量也可达到15000t/d,装置的操作弹性可以达到50%105%,综合能耗为9.27kg标油/t。  相似文献   

16.
溴化锂制冷技术在低温热回收利用中的应用   总被引:2,自引:0,他引:2  
李平阳 《中外能源》2010,15(2):96-99
九江石化为了降低炼油能耗,实施了延迟焦化装置低温余热回收综合利用改造,将50℃热媒水分别进入常减压、1号催化、2号催化等6套热源装置,换热到128℃后,用于再沸器加热,为控制热媒水温度,在末端配有冷却循环水,控制热媒水返回温度在50℃左右。为了增加低温热系统的操作弹性,改造中引入了溴化锂制冷技术。溴化锂制冷机理为水在物体表面蒸发汽化,带走物体表面的热量,在真空条件下,物体表面温度会降到很低。溴化锂是一种吸水性极强的盐类物质,可以连续不断地将周围的水蒸气吸收过来,可创造和维持真空条件。溴化锂吸收式制冷机是利用溴化锂作吸收剂,用水作制冷剂,利用不同温度下溴化锂水溶液对水蒸气的吸收与释放来实现制冷的。应用溴化锂机组后,装置热平衡系统得到优化,循环热媒水末端温度下降到64℃(投用前为76℃),可节约冷却循环水600t/h;焦化装置干气吸收效果明显改善,C3+组分平均值为2.75%(体积分数),同比下降3.11个百分点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号