首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
通过光学显微镜、扫描电镜对2205双相不锈钢1050、1350 ℃固溶30 min+650~1000 ℃时效0.5~1440 min后σ相形貌和含量进行观测。结果表明:经过1050 ℃固溶处理后,2205双相不锈钢在650~850 ℃时效处理过程中存在σ相析出行为。当时效温度为850 ℃时,σ相析出最快;随着时效温度偏离850 ℃,σ相析出速度降低。经过1350 ℃固溶后,σ相析出温度整体提高,析出温度范围更宽。σ相析出后即发生迅速长大,在3 h内体积分数可达0.25%~1.75%;之后其生长速率逐渐减缓。σ相首先在铁素体与奥氏体相界处以小于1 μm的近似球状颗粒形貌析出,之后沿着铁素体相中宽度在几微米的狭窄区域向铁素体内生长。2205双相不锈钢的时效处理温度影响σ相的析出行为,时效处理应在偏离850 ℃的温度下进行,以防止σ相的析出和快速长大。  相似文献   

2.
通过SEM和EDS对2205双相不锈钢的维氏硬度及矫顽磁力的测量.研究了2205双相不锈钢在时效条件下σ相的析出规律,分析了σ析出相对2205双相不锈钢的维氏硬度及其矫顽磁力的影响.结果表明:仃析出相的多少与时效时间成正比,与时效温度成反比.σ析出相越多,其硬度越高,2205不锈钢经800℃时效8 h后,基体铁素体发生分解,其矫顽磁力为零.  相似文献   

3.
对2205双相不锈钢进行900℃保温不同时间的时效处理并对室温Ⅴ型缺口冲击功进行了测定。采用定量金相,扫描电镜(SEM),能谱分析(EDS)和透射电镜(TEM)等实验技术,对2205双相不锈钢经不同时效处理后的显微组织进行了分析,结果表明,在900℃时效处理的条件下,2205双相不锈钢组织由铁素体、奥氏体以及σ相组成;随着时效时间的延长,σ相的析出量逐渐增多,该钢种的冲击功随时效时间的延长显著降低,正是由于组织中脆性相σ相在α/γ晶界析出所造成;而且,2205钢的冲击功对σ相的含量非常敏感,当组织中σ相的含量达到5.32vol%时,其冲击功仅为32J。  相似文献   

4.
对2507超级双相不锈钢在920℃进行了不同保温时间的时效处理,采用光学显微镜、扫描电镜、X射线衍射仪和能谱仪分析了不同时效状态下的组织演变规律,通过硬度试验和冲击试验研究了时效时间对2507超级双相不锈钢性能的影响。结果表明,920℃时效处理时,大量的σ相沿γ/α及α/α晶界析出,并向铁素体内部长大,其形成机理为铁素体共析转变成σ相和二次奥氏体γ2;在时效5 min内σ相的析出速率最快,随着时效时间的延长,σ相的含量增加,但析出速率逐渐变小;σ相的出现严重降低了超级双相不锈钢的冲击韧性,并且使其硬度明显增加,冲击功和硬度值的大小与σ相析出量有关,当920℃时效30 min时,σ析出相的含量接近于28%,对应双相不锈钢的冲击功和硬度值分别为6 J和376 HB。  相似文献   

5.
2205双相不锈钢在一定温度下时效处理会析出第二相,不锈钢的各种性能会因此受到影响。研究了热轧2205双相不锈钢时效不同时间与析出相的联系,并探究其析出规律。利用光学显微镜(OM)和扫描电镜(SEM)配合能谱仪(EDS)观察了析出相显微组织的变化,并对析出相和基体的成分进行了点扫描成分分析。结果表明,在850 ℃时效5 min,χ相即会优先在铁素体晶界处析出,随着时效时间延长σ相将逐渐析出,铁素体含量减少,奥氏体及析出相的比例增大。  相似文献   

6.
对1050 ℃固溶处理后的2205双相不锈钢在650~1000 ℃下时效处理,利用金相显微镜(OM)和扫描电镜(SEM)观测不同工艺条件下σ相析出规律,绘制了σ相析出TTP曲线图,描述了σ相析出特征。结果表明:时效初期,σ相优先在铁素体与奥氏体相界处形核,随着时效温度的升高和时效时间的增加,σ相不断长大、粗化并向铁素体基体内延伸;时效时间越长,析出相越多,时效时间相同时,当温度达到850 ℃,析出量达到最大值,之后随着温度的升高而降低。σ相析出温度范围为650~950 ℃,析出鼻尖温度为850 ℃,轧制变形量增加,σ相析出速度加快,但并不影响其析出的鼻尖温度。  相似文献   

7.
吴东领 《铸造技术》2014,(6):1223-1224
利用扫描电子显微镜和X射线衍射仪,研究了时效处理温度对铸造双相不锈钢组织中析出相的影响。结果表明,铸造双相不锈钢固溶处理后水淬,在不同时效温度下处理后,奥氏体晶体内并不会产生任何相变,析出相均来自铁素体内部和晶界上。  相似文献   

8.
《塑性工程学报》2015,(5):100-107
对高温固溶之后的SAF2906双相不锈钢进行时效处理,固溶温度为1200℃,保温时间1h,时效温度为650℃、700℃、750℃、800℃、850℃、900℃和950℃,采用扫描电镜(SEM)、X射线衍射(XRD)以及透射电镜(TEM)等方法观察SAF2906双相不锈钢中析出相的形态,用EDS能谱测量析出相中各化学元素的含量,通过恒温拉伸机对试样进行恒温拉伸,分析在不同实验温度下试样伸长率的变化。实验结果表明,在本实验条件下,σ相的析出量随时效温度的升高呈现先增大后减小的趋势,在850℃左右达到最大,SAF2906双相不锈钢中的σ析出相分布规律与同类型双相不锈钢有相似之处,形核位置大部分在α-铁素体内部和γ-奥氏体/α-铁素体两相之间,部分析出相出现在γ-奥氏体内部;σ相在超塑拉伸过程变形后期容易导致断裂,在变形温度为850℃与900℃时,试样伸长率分别可以达到382%和538%,当温度为950℃时,随着保温时间的延长,σ相在试样中的比例不断下降,同时试样伸长率不断上升,当保温时间长于5min,σ相比例下降到5%以下,此时伸长率可达1000%。  相似文献   

9.
利用OM、SEM和EBSD等研究了经1100 ℃保温30 min固溶的热轧超级双相不锈钢(SDSS)2507在不同时效温度(750~1000 ℃)及时间(1~240 min)下的第二相析出行为。结果表明,固溶态SDSS 2507的微观组织主要是铁素体和奥氏体。在750~1000 ℃时效处理后有σ相和χ相析出。时效温度较低时,χ相从铁素体相析出且稳定存在。随着时效温度的升高,σ相主要通过α→σ+γ2共析反应生成,随着时效时间的延长,组织中亚稳态χ相溶解并促进σ相析出。另外,时效温度也会影响第二相形貌:高温时效时(>950 ℃),析出相形貌主要为片状σ相和γ2相,低温时效时析出物主要呈颗粒状。由第二相析出行为及第二相的TTT曲线可知,热轧变形使SDSS 2507第二相形核的孕育期缩短,析出速度提高,析出敏感温度约为950 ℃。  相似文献   

10.
对固溶态的2906超级双相不锈钢材料进行了650~950℃×6 h时效处理,利用OM、XRD、SEM、EDS和电化学工作站分析r时效温度对材料金属间相、力学性能和耐蚀性能的影响.试验结果表明:650℃时效6 h时,没有发现σ相生成,材料的抗拉强度和耐蚀性变化不大;当时效温度为750℃,组织中生成σ相含量最多,导致抗拉强度降低、塑性及耐蚀性大大下降,但硬度略有提高;随着时效温度的进一步提高到850℃及950℃,生成的口相逐渐减少,强度及耐蚀性略有回升.  相似文献   

11.
《塑性工程学报》2016,(3):125-132
对高温固溶后的SAF2906双相不锈钢进行时效处理,固溶温度为1 200℃,保温时间1h,时效温度为650℃、700℃、750℃、800℃、850℃、900℃、950℃,采用扫描电镜(SEM)、X射线衍射(XRD)以及透射电镜(TEM)等方法观察SAF2906双相不锈钢中析出相的形态,采用EDS能谱测量析出相中各化学元素的含量,通过恒温拉伸机对试样进行恒温拉伸,分析在不同实验温度下试样伸长率的变化。结果表明,在本实验条件下σ相的析出量随时效温度的升高先增大后减小,在约850℃达到最大,SAF2906双相不锈钢中的σ析出相分布规律与同类型双相不锈钢相比有相似之处,形核位置大部分出现在α-铁素体内部和γ-奥氏体/α-铁素体两相之间,但有部分析出相出现在γ-奥氏体内部;σ相在超塑拉伸过程变形后期容易导致断裂,在变形温度为850℃与900℃时,试样伸长率分别可以达到382%和538%,当温度为950℃时,随着保温时间的延长,σ相在试样中的比例不断下降,同时试样伸长率不断上升,当保温时间达到5min时,σ相比例5%,此时伸长率可达1 000%。  相似文献   

12.
通过Jmatpror软件、扫描电镜(SEM)、能谱仪(EDS)、万能拉伸试验机和硬度计等研究了UNS S32750双相不锈钢σ相在鼻尖温度的析出行为及其对力学性能的影响。结果表明:σ相在鼻尖温度950℃下的析出行为分为3个阶段,保温5~60 min时,σ相快速析出;保温60~120 min时,σ相缓慢析出;保温≥120 min时,σ相析出达到饱和。σ相具有显著的强硬化作用,实验钢的抗拉强度和硬度与σ相体积含量成正比关系,σ相强化机理为Orowan机制。在鼻尖温度下,保温5~60 min时,实验钢的抗拉强度和硬度快速增加,伸长率快速降低,保温60~120 min时,抗拉强度和硬度缓慢上升,伸长率缓慢降低,保温≥120 min时,抗拉强度略微下降,伸长率基本保持不变。在鼻尖温度下随着保温时间的增加,拉伸试样的断裂形式从韧窝断裂和沿晶脆性断裂的混合模式转变为脆性断裂。  相似文献   

13.
双相不锈钢中σ相的析出及其数学模型   总被引:2,自引:0,他引:2  
论述了固溶处理和时效处理对双相不锈钢中σ相析出规律的影响,并推荐了典型双相不锈钢2205和2507牌号优化的热处理工艺制度;根据σ相的形成特点,简要介绍了关于σ相析出数学模型建立的基本理论和步骤;并对国内外该技术的发展状况做了综合性的评述.  相似文献   

14.
高温时效对310不锈钢硫化行为的影响   总被引:1,自引:0,他引:1  
研究了高温时效前后的310不锈钢样品在气氛总压为1 05Pa,2.3%SO2/S2/8.8%N2气氛中600℃下的高温硫腐蚀行为.利用金相、扫描电镜/ 能谱及X射线衍射等分析其腐蚀形貌、成分及结构.结果表明:经时效处理的310不锈钢比未 时效处理者腐蚀严重,前者以晶间腐蚀为主,后者以均匀腐蚀为主.310不锈钢于700℃,100 00 h时效后在晶界大量析出σ相,使晶界附近贫Cr,降低了其抗硫腐蚀性能.  相似文献   

15.
借助光学显微镜(OM)、扫描电子显微镜(SEM)研究了铸造双相不锈钢在800 ℃时效不同时间的组织演变规律,并结合电子布氏硬度计(HBE-3000 A)研究时效过程组织转变对材料力学性能的影响。结果表明:时效过程中,双相不锈钢中铁素体相的比例随时效时间延长而逐渐减少,铁素体在时效处理过程中分解析出富Cr相和γ2相,富Cr相主要存在铁素体与奥氏体的晶界处,而γ2相则分布在铁素体基体上,并随着时效时间增加不断生成并长大。结合硬度测试结果发现,富Cr相的析出对材料硬度的提高起到了主要作用。  相似文献   

16.
高温时效对2205双相不锈钢中σ相析出行为的影响   总被引:2,自引:0,他引:2  
对2205双相不锈钢进行了750、800、850、900和950℃分别保温0.5、1、2h的时效处理,采用定量金相、SEM和EDS、化学萃取、XRD和电子背散射衍射(EBSD)等方法研究了2205双相不锈钢中σ相析出与时效时间、温度的变化规律。结果表明:2205双相不锈钢经不同时效工艺处理后的组织主要由奥氏体、铁素体、σ相组成,σ相一般在γ/α相界处或铁素体内析出;在相同时效温度下,随着时间的延长,σ相的析出量明显增多,而在850℃进行时效处理会使钢中σ相的析出量达到最高值。此外,采用EBSD方法有望对2205双相不锈钢中的σ相进行准确的定量分析。  相似文献   

17.
采用金相显微镜 (OM)、显微硬度仪、电化学动电位再活化法 (EPR) 和电化学阻抗谱 (EIS) 对不同温度时效态S32101节镍双相不锈钢的显微组织、显微硬度和耐蚀性进行研究。结果表明:随时效温度从300 ℃升高,显微硬度增加,钝化膜致密性和耐蚀性下降;700 ℃时,相界处出现明显析出相,为碳氮化物和二次奥氏体组成的混合相,显微硬度达最大,钝化膜致密性和耐蚀性最差,几乎整个铁素体相被腐蚀,腐蚀机理是铁素体相的选择性溶解;继续升高到900 ℃,析出相减少,硬度下降,钝化膜致密性变好,耐蚀性提高。  相似文献   

18.
分析了时效温度、时效时间、固溶温度、铬和钼含量对2205双相不锈钢中σ相析出量的影响规律.结果表明:随着时效时间延长,σ相析出量依次增加.在相同的时效时间下,随着时效温度升高σ相含量依次增大,在850℃时达到最大值;温度超过850℃后,随着时效温度升高σ相含量依次减小.时效时间相同的情况下,随着固溶温度、铬含量和钼含量...  相似文献   

19.
研究了时效处理对2205双相不锈钢性能的影响.结果表明:2205双相不锈钢在475℃进行时效处理会发生严重脆化现象:其原因是由于在时效处理过程中,δ-铁素体相的微观结构发生了剧烈的转变,从而造成了严重的时效硬化.  相似文献   

20.
时效时间对2101双相不锈钢电化学腐蚀行为的影响   总被引:3,自引:0,他引:3  
采用电化学动电位极化曲线和动电位再活化(EPR)技术系统研究了时效处理对2101双相不锈钢(DSS 2101)腐蚀行为的影响.利用扫描电镜(SEM)观察了电化学测试之后的样品表面形貌.结果表明:随着时效时间的增加,样品耐点蚀和耐晶间腐蚀能力逐步下降,分别对应于破裂电位的下降和活化率的升高.对于固溶样品,点蚀优先发生在铁索体内部;对于时效态的样品,点蚀优先发生在氮化物附近,即二次奥氏体上.对析出动力学与电化学腐蚀行为之间的关系进行了讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号