首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用SAA超声分散法制备了4种多壁巴基管 (NMWT)悬浮分散液,研究了PAA对不同NMWT掺量的分散效果;然后将相应的悬浮液混合到水泥中,搅拌成型制备了NMWT水泥基复合材料 (NFRC).采用四电极法测试了NFRC的I V特性,之后研究了NFRC的抗压强度,并与空白试块的相应性能进行了对比.结果表明,PAA双亲结构特征产生的位阻及静电排斥作用能获得NMWT的较好分散性,但改善效果有限.NMWT的加入能一定程度改善NFRC的I V特性及力学强度:随着NMWT掺量增加,其电阻率 (ρ)呈先降后上升而后又降的趋势;其抗压强度 (σc)呈先被增强后持续削弱的趋势.  相似文献   

2.
巴基管水泥基复合材料的Ⅰ-Ⅴ特性及力学强度   总被引:1,自引:0,他引:1  
采用SAA超声分散法制备了4种多壁巴基管(NMWT)悬浮分散液,研究了PAA对不同NMWT掺量的分散效果;然后将相应的悬浮液混合到水泥中,搅拌成型制备了NMwT水泥基复合材料(NFRC).采用四电极法测试了NFRC的Ⅰ-Ⅴ特性,之后研究了NFRC的抗压强度,并与空白试块的相应性能进行了对比.结果表明,PAA双亲结构特征产生的位阻及静电排斥作用能获得NMWT的较好分散性,但改善效果有限.NMWT的加入能一定程度改善NFRC的Ⅰ-Ⅴ特性及力学强度:随着NMWT掺量增加,其电阻率(ρ)呈先降后上升而后又降的趋势;其抗压强度(σc)呈先被增强后持续削弱的趋势.  相似文献   

3.
研究了聚丙烯酸(PAA)或/与壬基酚聚氧乙烯醚(10) (Tx100)对不同多壁巴基管 (MWNT)掺量的分散效果,然后制备了5组MWNT增强水泥基复合材料 (MWNT/CMs).用四电极法测试了MWNT/CMs的I-V特性,并对3组MWNT/CMs中的MWNT分散形貌进行了SEM观察.结果表明:PAA作用难获得MWNT良好分散,尤其MWNT掺量较大时,SEM显示其在基体中多为团聚缠绕状,分布均匀性差;相应MWNT/CM的电阻率(ρ)值均较高,I-V特性的非线性也较明显.PAA与Tx100(Ф(PAA)∶Ф(Tx100)=2)共同作用能良好分散较高掺量的MWNT,SEM显示多数MWNT在基体中有较好的相容分布性;NPT4组MWNT/CM的ρ均只有12.7 Ω·m 左右(ρmax也只有14.8 Ω·m),而相同MWNT掺量的NP4组MWNT/CM的ρ却为429.8 Ω·m,ρmax达1 170.1 Ω·m.  相似文献   

4.
《焦作工学院学报》2019,(1):152-156
为了解煤制油炉渣的基本性能,使其作为混凝土骨料替代天然砂石制备炉渣喷射混凝土,通过分析煤制油炉渣的物理性能和矿物组成,采用优化炉渣混凝土配合比以及改变可再分散乳胶粉、硅灰等外加剂掺量的方法制得炉渣混凝土,测试其黏接性与强度性能,观察炉渣骨料——水泥的微观界面结构。结果表明:煤制油炉渣具有与建筑用砂相似的粒度与物理性质,水泥与炉渣质量比为1∶4时强度性能良好;随着硅灰掺量增加,抗折、抗压强度增加,黏接性变化不明显;随着可再分散乳胶粉掺量增加,抗折强度先增高后降低,抗压强度线性降低,黏接性大幅改善。最后得到制备煤制油炉渣喷射混凝土的最佳条件。  相似文献   

5.
聚乙二醇(PEG)作为增黏剂对水泥基材料性能有较大的影响,笔者对其流动度、电阻率、强度、压汞和扫描电镜等进行了分析测试。结果表明:与掺 PEG400(P4)相比,掺 PEG800(简称 P8) 增黏效果更好;在0.1%~0.4%掺量范围内,掺 P4均可促进水泥水化,但随着掺量的增加,其促进 作用呈先增大后减小趋势;掺 P8时,其掺量较小时可促进水化,掺量较高时有缓凝作用,但两者效果均不明显。掺 PEG 可增大水泥水化产物低密度 C-S-H 凝胶密实度,并促进粉煤灰火山灰反应, 其对自密实混凝土具有明显增强效果。  相似文献   

6.
合理控制水泥混凝土的机制砂掺量是改善混凝土工作性能的有效措施。文章结合潍坊地区实际工程,研究机制砂掺量对水泥混凝土性能的影响,在相同水灰比下向天然河砂中掺配5种比例的机制砂,制备水泥混凝土试块,测试其和易性和抗压强度。结果表明:机制砂掺配比例为50%时,坍落度下降速率最快,初期坍落度相对于未掺配机制砂的混凝土减少了11.9%,1 h后坍落度减少了15.7%,但仍能满足坍落度要求;水泥混凝土7、28 d的抗压强度相对于未掺机制砂的水泥混凝土分别提高了约3.4%、5.5%;综合考虑和易性、抗压强度以及经济性,推荐机制砂掺配比例≤50%。  相似文献   

7.
滞洪区亚粘土作路基基层、底基层填料土必须进行固化改良,本文采用石灰一粉煤灰、水泥一粉煤灰组合和水泥一石灰组合对其进行改良研究,以承栽比CBR值作为指标,针对不同的压实度、固化剂不同配合比掺量开展了系列试验,并进行了分析和讨论.试验结果表明,三种改良填料土的抗压强度,随着压实度增加,分别先呈现不同比例的增长,但增加到一定值后,开始趋于平稳或弱有减少,可控制压实度在93%~96%之间,能兼顾施工质量与经济.水泥一粉煤灰组合改良土和石灰一粉煤灰土在水泥或石灰掺量一定时,其承栽比随着粉煤灰掺量的增大呈先增大后减少;水泥一石灰组合和石灰一粉煤灰组合改良土在水泥或粉煤灰掺量一定时,其承载比也随石灰掺量的增大呈先增大后减少.三种改良土粉煤灰、石灰掺量都存在最佳配合掺量,基于试验结果,笔者就三种改良路基土给出了建议的配比.  相似文献   

8.
以玄武岩纤维、微胶囊和水泥为原料,制备具有自修复功能的微胶囊玄武岩纤维-水泥复合材料.采用三点弯曲法对复合材料试样进行断裂能测试,研究纤维掺量、纤维长度、微胶囊质量分数和水灰质量比对断裂能的影响,研究复合材料的抗折强度、抗压强度与断裂能的关系.结果显示,复合材料的断裂能随着纤维掺量的增加而增加,当纤维掺量为10 kg/m3时,断裂能达到107.89 N/m;断裂能随纤维长度的增加呈较小幅降低;断裂能随微胶囊质量分数的增加呈先增后降趋势,当微胶囊质量分数为2%时,断裂能达到最大值;断裂能随水灰质量比的增加而降低;断裂能与抗折强度有一定的线性关系,与抗压强度关系不明显;材料经损伤后修复,断裂能修复率为80.15%,恢复率为95.52%.  相似文献   

9.
为了研究橡胶粉掺量、水泥掺量、橡胶粉粒径、养护方式以及龄期等因素对橡胶水泥土抗冻性能的影响,设计了初期受冻和冻融循环两类试验.试验表明:初期受冻对后期橡胶水泥土抗压强度没有影响,橡胶水泥土负温条件下抗压强度增长率高于水泥土;冻融循环初期,橡胶水泥土抗压强度呈增大趋势,峰值约出现在第15次循环;随着橡胶粉掺量的增加,抗压强度降低,橡胶粉掺量为10%的橡胶水泥土受冻融循环影响较小;随着水泥掺量的增加,抗压强度变大;对于试验选取的两种橡胶粉粒径,含粒径大的橡胶水泥土抗冻效果较好.  相似文献   

10.
为研究轻质混合土在冻融循环作用下的物理和力学特性的变化规律,对不同EPS颗粒和水泥掺量下的轻质土试样进行冻融循环试验,在经历0、1、3、6、9次冻融循环时,对试样的体积、质量以及无侧限抗压强度进行测量。试验结果表明:随着水泥和EPS颗粒掺量的增加,轻质土的冻胀率和质量损失率会逐渐下降。通过无侧限抗压强度试验,得到了不同冻融循环次数下的轻质土应力应变曲线,结果表明轻质土的抗压强度会随着冻融循环次数的增加而降低,但当EPS颗粒掺量和水泥掺量提高后,轻质土抗压强度的损失速率明显降低。当EPS颗粒掺量达到2.5%时对改善强度损失改善效果不明显,可以认为2%EPS掺量为轻质土的“临界掺量”。基于数据建立了抗压强度和冻融次数之间的定量关系,两种函数均能反映在冻融循环后其抗压强度的劣化规律,为轻质土在严寒地区的应用提供了参考。  相似文献   

11.
鉴于纤维的韧性和水泥的强度特性,将分散的纤维和水泥均匀掺入土体中形成纤维水泥土.通过一系列无侧限抗压强度试验,主要研究纤维掺量、水泥掺量和龄期对纤维水泥土无侧限抗压强度特性的影响.试验结果表明:纤维能有效提高素黏土和水泥土的无侧限抗压强度和韧性,当纤维掺量为0.6%时,两者的无侧限抗压强度达到峰值,然后随纤维掺量的增加而降低;纤维水泥土的无侧限抗压强度随养护龄期的增加而提高,28d达到峰值并趋于稳定;在纤维最佳掺量0.6%和水泥掺量8%条件下,纤维水泥土的无侧限抗压强度可提高到素黏土的13倍.  相似文献   

12.
膨润土浆液常作为地下工程双轮铣水泥土搅拌墙(CSM)的铣削液来改善土体搅拌均匀性和维持槽壁稳定。通过室内试验研究膨润土水泥土试样无侧限抗压强度和渗透系数等特性随膨润土掺入量的变化情况,并结合压汞试验分析掺入膨润土对水泥土微观孔隙特征的影响,探讨掺入膨润土后试样孔隙比的变化与水泥土试样无侧限抗压强度和渗透系数的内在关联。结果表明,掺入膨润土可显著降低水泥固化砂土和粉土的渗透系数;掺入膨润土还能提高无侧限抗压强度,砂土试样的无侧限抗压强度增幅较水泥固化粉土试样更大;固化土无侧限抗压强度和孔隙比与水泥掺量的比值近似呈幂函数关系;膨润土能有效填充孔隙,同时与水泥水化产物发生化学反应,改变水泥土孔隙分布;掺入适量的膨润土可改善水泥土试样承强防渗效果,在固化粉土和砂土试样中膨润土的适宜掺入量分别为5%和2.5%~5%。  相似文献   

13.
分别以配制的氯氧镁水泥、硫氧镁水泥、磷酸镁水泥为胶凝材料,采用化学发泡制备干密度等级为A05的三种镁基泡沫混凝土。通过设计正交试验,确定了水胶比、镁水泥组分配比、缓凝剂掺量、粉煤灰掺量和聚丙烯纤维掺量对三种镁基泡沫混凝土抗压强度的影响程度,对比分析了重要影响因素的作用机理,建立了镁基泡沫混凝土比强度与镁水泥组分配比的函数关系式。研究结果表明,氯氧镁泡沫混凝土抗压强度影响因素的主次关系为:镁水泥组分配比>水胶比>粉煤灰掺量>聚丙烯纤维掺量>缓凝剂掺量,各因素对硫氧镁泡沫混凝土抗压强度影响显著性与氯氧镁泡沫混凝土相同,磷酸镁泡沫混凝土抗压强度影响因素的主次关系为:镁水泥组分配比>缓凝剂掺量>水胶比>粉煤灰掺量>聚丙烯纤维掺量,与氯氧镁泡沫混凝土和硫氧镁泡沫混凝土略有不同,缓凝剂掺量影响程度较高;镁水泥的组分配比是影响镁基泡沫混凝土强度的重要指标,氯氧镁泡沫混凝土与硫氧镁泡沫混凝土的抗压强度随镁水泥组分配比增加的变化趋势相同,均先减小后增大,而磷酸镁泡沫混凝土随镁水泥组分配比增加呈现先增大后减小的趋势;三种镁基泡沫混凝土的比强度与镁水泥组分配比之间存在幂函数关系。  相似文献   

14.
为了研究稻草纤维增强泡沫混凝土的性能,以普通硅酸盐水泥为主要胶凝材料,硅灰、偏高岭土和粉煤灰为辅助胶凝材料,稻草纤维为增强材料,采用物理发泡法制备纤维增强泡沫混凝土;通过全因子试验,研究在不同水胶比和发泡剂掺量下,稻草纤维掺量对泡沫混凝土的密度、吸水率、抗压强度、抗折强度、劈裂抗拉强度和抗冻性能的影响。结果表明:对于不同水胶比和发泡剂掺量,泡沫混凝土的密度、抗压强度和劈裂抗拉强度均随纤维掺量的增加呈现出先增加后降低的变化规律;抗压强度随密度增加呈幂函数增加关系;劈裂抗拉强度随抗压强度的增加呈指数函数增加关系;当水胶比为0.45时,抗折强度随纤维掺量的增加先增加后降低,当水胶比为0.50时,抗折强度随纤维掺量的增加而增加;纤维的掺入增大了泡沫混凝土的泡孔尺寸和吸水率,降低了其抗冻性能。  相似文献   

15.
为研究耐碱玻璃纤维工程用水泥基复合材料(耐碱玻璃纤维ECC)的抗压性能及应力-应变关系,对33组高性能水泥基材料试件进行了轴压性能试验,分析了纤维掺量、纤维长度及水灰比对耐碱玻璃纤维ECC的受压性能及应力-应变关系的影响,提出了耐碱玻璃纤维ECC受压应力-应变关系计算模型。结果表明,掺入耐碱玻璃纤维可以明显改善水泥基材料在单轴受压状态下的抗裂、受力和变形性能;耐碱玻璃纤维ECC试件抗压强度和变形能力的提升程度与纤维掺量、纤维长度及水灰比有关;随着纤维掺量和长度增加,耐碱玻璃纤维ECC试件的抗压强度和变形能力大致呈递增趋势,但掺量过多会因“团聚”现象明显导致试件抗压强度降低;水灰比主要影响试件的抗压强度,水灰比越大,抗压强度越小;当纤维质量掺量为6.5%、纤维长度为18mm及水灰比为0.32时,碱玻璃纤维ECC的综合力学性能相对较优,其抗压强度和变形能力分别可提升25.6%和88%;提出的应力-应变关系模型的计算值与试验值吻合较好,可用于描述耐碱玻璃纤维ECC的受压破坏全过程。  相似文献   

16.
以采用工业粉状废物为主要原料配制的无水泥固结剂对细粒铁尾矿膏体进行固化处理,以三乙醇胺、氯化钙、水玻璃为激发剂来提高固结剂的活性,重点研究这3种激发剂在单掺或复掺时对固结体抗压强度的影响。结果表明,激发剂单掺时,水玻璃的激发效果要明显优于三乙醇胺和氯化钙,水玻璃掺量为0.75%时,其激发效果最好,固结体7 d抗压强度比不掺激发剂时提高了29%;水玻璃与三乙醇胺复掺时的激发效果最优,当水玻璃掺量为0.75%、三乙醇胺掺量为0.035%时,固结体7d抗压强度达到1.4MPa,比单掺水玻璃时提高了16%。  相似文献   

17.
研究了纳米高岭土颗粒对不同龄期水泥基材料微观结构(微孔结构、微观结构)及物理力学性能(工作性、抗弯强度、抗压强度、氯离子渗透性)的影响。结果表明,纳米高岭土颗粒的填充效应及其对水泥水化的促进作用改善了水泥基材料的微观孔结构,限制了氯离子在水泥基材料中的渗透扩散。当高岭土为水泥质量的1%时,水泥浆1、3、7、90 d抗弯强度分别提高30.41%、39.04%、36.27%和38.32%;当高岭土为水泥质量的5%时,水泥砂浆氯离子扩散系数降低53.03%;混凝土氯离子扩散系数随高岭土掺量增加呈指数递减;当高岭土为水泥质量的5%时,氯离子扩散系数降低18.87%;抗压强度分别提高28.4%;改性混凝土28 d抗压强度与混凝土氯离子扩散系数呈线性增加关系。  相似文献   

18.
选取水泥、废旧混凝土细骨料和海泥为试验材料,通过无侧限抗压强度试验,测定水泥-废旧混凝土细骨料双掺固化海泥(简称双掺固化海泥)的无侧限抗压强度,分析水泥掺量和废旧混凝土细骨料掺量对双掺固化海泥试样无侧限抗压强度的影响,研究双掺固化海泥试样极限应变分布特征。结果表明,本研究中双掺固化海泥试样的无侧限抗压强度随废旧混凝土细骨料掺量的增加而增大,当掺加废旧混凝土细骨料质量与海泥干质量之比为0.12时,无侧限抗压强度提升最明显;试样无侧限抗压强度与水泥掺量呈正相关关系,当掺加水泥质量与海泥干质量之比为0.16时,试样无侧限抗压强度最大。双掺固化海泥极限应变稳定在一个特定区间。  相似文献   

19.
为改善传统单掺有机纤维水泥基材料的抗压性能,采用钢纤维+聚乙烯纤维混杂方式制备了一种高韧性水泥基复合材料,在聚乙烯(PE)纤维体积掺量固定为1%的情况下,考虑钢纤维体积掺量分别为0、0.3%、0.6%、0.9%4种工况下该水泥基复合材料的抗压试验,分析了钢纤维掺量、长度、直径对其抗压性能的影响。结果表明,采用钢纤维与PE纤维混杂方式可显著提高水泥基复合材料的抗压性能,在采用较长钢纤维的情况下,较低的体积掺量可以有效提升试件的抗压强度,直径越小的钢纤维试件抗压性能越好。对比发现,钢纤维直径0.12mm、长度13mm、体积掺量为0.6%时混杂效应较好,其峰值压应力较未掺钢纤维的试件提升33.8%,极限压缩应变提升24.3%。  相似文献   

20.
沥青道路冷再生系统中水泥基胶结效应   总被引:2,自引:0,他引:2       下载免费PDF全文
设定不同配比的再生沥青混合料(RAP)和不同水泥掺量,通过标准击实、无侧限抗压强度、水稳定性、模量性能以及SEM测试,研究了水泥在RAP中的胶结效应。结果表明:RAP中沥青含量与稳定土的质量比(A/s)为0.4时,随着水泥掺量的增大,RAP的最大干密度从1.91g/cm。增加到2.00g/cm^3。水泥掺量一定时,随着废旧沥青含量的增加,RAP的最大干密度随随之增大;掺6%水泥的RAP无侧限抗压强度从1.48MPa增加到2.63MPa,随之减小到2.28MPa。使用的材料体系中,A/S=0.4,掺6%水泥,用水量9.5%时,再生料获得最好性能。试件浸水后抗压强度普遍降低,但与干燥试件无侧限抗压强度变化趋势一致。对RAP的模量试验表明高温状态下RAP混合料的路用性能最差。SEM测试表明:水泥的水化使得混合料中有针状钙矾石和纤维状C—S—H凝胶相互交织搭接,形成网络结构,将集料颗粒包裹起来,这是RAP产生强度的主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号