首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For membrane bioreactors (MBR) with enhanced nutrients removal, rather complex recirculation schemes based on the biological requirements are commonly recommended. The aim of this work was to evaluate other recirculation options. For a laboratory scale MBR, four different recirculation schemes were tested. The MBR was operated with COD degradation, nitrification, post-denitrification without carbon dosing and biological phosphorus removal. For all configurations, efficient COD, nitrogen and phosphorus removal could be achieved. There were no big differences in elimination efficiency between the configurations (COD elimination: 96.6-97.9%, nitrogen removal: 89.7-92.1% and phosphorus removal: 97.4-99.4%). Changes in the degradation, release and uptake rates were levelled out by the changes in contact time and biomass distribution. With relatively constant outflow concentrations, different configurations are still interesting with regard to oxygen consumption, simplicity of plant operation or support of certain degradation pathways such as biological phosphorus removal or denitrification.  相似文献   

2.
Two similar membrane bioreactors of 2 m3 each were operated in parallel over two years under the same operational conditions, fed with the same municipal wastewater. The only process and operational difference between both pilot plants was the position of the denitrification zone (pre-denitrification in pilot 1 and post-denitrification in pilot 2). Despite parallel operation, the two MBRs exhibited different fouling rates and decreases in permeability. These differences could not be accounted for by MLSS concentrations, loading rates, or filtration flux. In a one-year investigation, soluble and colloidal organic material in the activated sludge of both MBR was regularly analysed by spectrophotometric and Size Exclusion Chromatography (SEC) methods. The larger organic molecules present in the sludge water phase (i.e. polysaccharides, proteins and organic colloids) originating from microbial activity (extracellular polymeric substances) were found to impact on the fouling and to explain the difference in membrane performance between the two MBR units. In both pilot plants, a linear relationship could be clearly demonstrated between the fouling rate of the membrane and the concentration of polysaccharides in the sludge water phase during a 5 month operational period at an SRT of 8 days.  相似文献   

3.
A shortage of organic substances (COD) may cause problems for biological nutrient removal, that is, lower influent COD concentration leads to lower nutrient removal rates. Biological phosphorus removal and denitrification are reactions in which COD is indispensable. As for biological simultaneous nitrogen and phosphorus removal systems, a competition problem of COD utilisation between polyphosphate accumulating organisms (PAOs) and non-polyphosphate-accumulating denitrifiers is not avoided. From the viewpoint of effective utilisation of limited influent COD, denitrifying phosphorus-removing organisms (DN-PAOs) can be effective. In this study, DN-PAOs activities in modified UCT (pre-denitrification process) and DEPHANOX (post-denitrification process) wastewater treatments were compared. In conclusion, the post-denitrification systems can use influent COD more effectively and have higher nutrient removal efficiencies than the conventional pre-denitrification systems.  相似文献   

4.
The study was based on a full scale activated sludge plant (AS) compared to a parallel operated pilot membrane bioreactor (MBR) with flat sheets membranes. Both systems received their influent from an anaerobic bioreactor treating paper mill wastewater. MBR produced an effluent of much better quality than AS in terms of suspended solids, containing 1 mg/L or less in 80% of the monitoring time, while the AS effluent contained 12 mg/L. This could save the necessity of further treatment by filtration in the case of MBR. Other effluent quality parameters, such as organic matter (COD and BOD), phosphorus and ammonia nitrogen, did not indicate substantial differences between AS and MBR. Calcium carbonate scaling and formation of a bacterial layer on the membrane caused severe flux reduction. The membrane blockage because of scaling and biofouling proved to be very serious, therefore, it required proper and more complicated maintenance than the AS system. This study leads to the conclusion that in the case of paper mill wastewater, after anaerobic biotreatment, if there is no need for excellent effluent quality in terms of suspended solids, the replacement of the AS by the MBR would not be strongly justified, mainly because of maintenance cost.  相似文献   

5.
A pilot study was conducted to test an membrane bioreactor (MBR) process for combined biological and chemical P removal to achieve a very low effluent total phosphorus (TP) concentration of 0.025 mg P/L. With the data from the pilot test, a simulation study was performed to demonstrate that: (1) the pilot system behaviour (effluent quality, MLSS, etc.) can be modelled accurately with an activated sludge model combined with a chemical precipitation model; and (2) with the calibrated model, simulation scenarios can be performed to further understand the pilot MBR process, and provide information for optimizing design and operation when applied at full-scale. Results from the pilot test indicated that the system could achieve very low effluent TP concentration through biological P removal with a limited chemical addition, and chemical addition to remove P to very low level did not affect other biological processes, i.e., organic and nitrogen removal. Simulation studies indicate that the process behaviour can be modelled accurately with an activated sludge model combined with a chemical precipitation model, and the calibrated model can be used to provide information to optimize system design and operation, e.g., chemical addition control under dynamic loading conditions is important for maintaining biological P removal.  相似文献   

6.
MBR工艺处理城镇污水处理厂污泥水中试研究   总被引:2,自引:0,他引:2  
将平板膜组件与传统脱氮除磷工艺相结合,构建了膜生物反应器强化生物脱氮除磷中试系统,并用于处理城镇污水处理厂的污泥系统废水。结果表明,出水CODCr、BOD5、NH3—N、TN和TP的平均浓度分别为70.8 mg/L、8.7 mg/L、15.1 mg/L、29.7 mg/L和0.38 mg/L,达到或接近了《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级标准。  相似文献   

7.
Pharmaceuticals are continually being introduced into the influent of municipal wastewater treatment plants (WWTPs). Developing a better understanding of pharmaceutical removal mechanisms within the different treatment processes is vital in preventing downstream contamination of our water resources. In this study, ibuprofen, a popular over-the-counter pain reliever, was monitored by taking wastewater samples throughout the City of Guelph municipal WWTP. Greater than 95% of ibuprofen was found to be removed in the aeration tank, with aerobic biodegradation being the dominant mechanism. For comparison, first-order kinetics were used to quantify ibuprofen biodegradation in a conventional WWTP aeration tank and in a membrane bioreactor (MBR) pilot plant. The rate constants, k biol, for the conventional tank and the MBR were determined to be (-6.8+/-3.3) L/g SS*d and (-8.4+/-4.0) L/g SS*d, respectively. These two rate constants were found to be statistically similar. Preliminary study of a biological nutrient removal pilot system also suggests that ibuprofen can be anaerobically degraded.  相似文献   

8.
The impact of including membranes for solid liquid separation on the kinetics of nitrogen and phosphorus removal was investigated. To achieve this, a membrane bioreactor (MBR) biological nutrient removal (BNR) activated sludge system was operated. From batch tests on mixed liquor drawn from the MBR BNR system, denitrification and phosphorus removal rates were delineated. Additionally the influence of the high total suspended solids concentrations present in the MBR BNR system and of the limitation of substrate concentrations on the kinetics was investigated. Moreover the ability of activated sludge in this kind of system to denitrify under anoxic conditions with simultaneous phosphate uptake was verified and quantified.The denitrification rates obtained for different mixed liquor (ML) concentrations indicate no effect of ML concentration on the specific denitrification rate. The denitrification took place at a single specific rate (K(2)) with respect to the ordinary heterotrophic organisms (OHOs, i.e. non-PAOs) active mass. Similarly, results have been obtained for the P removal process kinetics: no differences in specific rates were observed for different ML or substrate concentrations. From the P removal batch tests results it seems that the biological phosphorus removal population (PAO) consists of 2 different sets of organisms denitrifying PAO and aerobic PAO.  相似文献   

9.
The operation of an activated sludge process at a paper mill (AIPM) in Hedera, Israel, was often characterized by disturbances. As part of a research and development project, a study on new biological treatment was initiated. The study included the operation of three pilot units: a. anaerobic treatment by upflow anaerobic sludge blanket (UASB); b. aerobic treatment by two pilot units including activated sludge and membrane bioreactor (MBR), which have been operated in parallel for comparison reasons. The pilot plant working on anaerobic treatment performed COD reduction from 2,365 to 755 mg/L, expressed as average values. Based on the pilot study, a full scale anaerobic treatment system has been erected. During a period of 100 days, after achieving steady state, the MBR system provided steady operation performance, while the activated sludge produced effluent characterized by oscillatory qualities. The following results, based on average values, indicate much lower suspended solids concentrations in the MBR effluent, 2.5 mg/L, as compared to 25 mg/L in the activated sludge. The ability to develop and maintain a concentration of over 11,000 mg/L of mixed liquor volatile suspended solids in the MBR enabled an intensive bioprocess at relatively high cell residence time. This study demonstrates that the anaerobic process, followed by aerobic MBR can provide effluent of high quality which can be considered for economic reuse in the paper mill industry.  相似文献   

10.
The use of immersed membranes for solid-liquid separation in biological nutrient removal activated sludge (BNRAS) systems was investigated at lab scale. Two laboratory-scale BNR activated sludge systems were run in parallel, one a MBR system and the other a conventional system with secondary settling tanks. Both systems were in 3 reactor anaerobic, anoxic, aerobic UCT configurations. The systems were set up to have, as far as possible, identical design parameters such as reactor mass fractions, recycles and sludge age. Differences were the influent flow and total reactor volumes, and the higher reactor concentrations in the MBR system. The performances of the two systems were extensively monitored and compared to identify and quantify the influence of the membranes on system response.The MBR UCT system exhibited COD, FSA, TKN, TP and TSS removals that were consistently equivalent or superior to the conventional system. Better P removal in the MBR was attributed to lower observed P uptake in the anoxic zone. High nitrate loads to the anoxic reactor appeared to be the determining factor in stimulating P uptake.The MBR UCT system had a greater sludge production than the conventional system. This was partly attributable to the retention of all solids in the MBR reactor. For steady state design this increase is accommodated by increasing the influent unbiodegradable particulate COD fraction. Additionally an attempt was made to determine the Alpha values in the oxygen transfer rate.This paper briefly summarises and compares the results from both systems, and the conclusions that can be drawn from these results.  相似文献   

11.
Simultaneous nitrification and denitrification (SND) via the nitrite pathway and anaerobic-anoxic enhanced biological phosphorus removal (EBPR) are two processes that can significantly reduce the COD demand for nitrogen and phosphorus removal. The combination of these two processes has the potential of achieving simultaneous nitrogen and phosphorus removal with a minimal requirement for COD. A lab-scale sequencing batch reactor (SBR) was operated in alternating anaerobic-aerobic mode with a low dissolved oxygen concentration (DO, 0.5 mg/L) during the aerobic period, and was demonstrated to accomplish nitrification, denitrification and phosphorus removal. Under anaerobic conditions, COD was taken up and converted to polyhydroxyalkanoates (PHA), accompanied with phosphorus release. In the subsequent aerobic stage, PHA was oxidized and phosphorus was taken up to less than 0.5 mg/L at the end of the cycle. Ammonia was also oxidised during the aerobic period, but without accumulation of nitrite or nitrate in the system, indicating the occurrence of simultaneous nitrification and denitrification. However, off-gas analysis found that the final denitrification product was mainly nitrous oxide (N2O) not N2. Further experimental results demonstrated that nitrogen removal was via nitrite, not nitrate. These experiments also showed that denitrifying glycogen-accumulating organisms rather than denitrifying polyphosphate-accumulating organisms were responsible for the denitrification activity.  相似文献   

12.
J Lee  J Kim  C Lee  Z Yun  E Choi 《Water science and technology》2005,52(10-11):569-578
In order to accomplish the biological nutrient removal with a weak sewage at low temperature, a hybrid process consisted of anoxic denitrifying phosphorus accumulating organism (dPAO) and nitrifying biological aerated filter (BAF) was studied in both lab and field pilot plants with weak sewage. The biofilm BAF was used as a post-nitrification process that provided sufficient nitrate to suspended growth dPAO. The anoxic/BAF configuration could remove nitrogen and phosphorus appreciably compared to other BNR systems. The enhanced biological phosphorus removal (EBPR) was mainly occurred in anoxic zone of suspended growth reactor. It has been found that P removal efficiency of dPAO was enhanced with an addition of a short oxic zone in suspended reactors compared to that of without oxic zone. However, the degree of aerobic P uptake in oxic zone was far lower than anoxic P uptake. The operating results of field plant indicated that dPAO/BAF configuration successfully reduced the adverse temperature effects at lower than 15 degrees C.  相似文献   

13.
A large pilot-scale membrane bioreactor (MBR) with a conventional denitrification/nitrification scheme for municipal wastewater treatment has been run for one year under two different aeration strategies in the oxidation/nitrification compartment. During the first five months air supply was provided according to the dissolved-oxygen set-point and the system run as a conventional predenitrification MBR; then, an intermittent aeration strategy based on effluent ammonia nitrogen was adopted in the aerobic compartment in order to assess the impact on process performances in terms of N and P removal, energy consumption and sludge reduction. The experimental inferences show a significant improvement of the effluent quality as COD and total nitrogen, both due to a better utilization of the denitrification potential which is a function of the available electron donor (biodegradable COD) and electron acceptor (nitric nitrogen); particularly, nitrogen removal increased from 67% to 75%. At the same time, a more effective biological phosphorus removal was observed as a consequence of better selection of denitrifying phosphorus accumulating organisms (dPAO). The longer duration of anoxic phases also reflected in a lower excess sludge production (12% decrease) compared with the standard pre-denitrification operation and in a decrease of energy consumption for oxygen supply (about 50%).  相似文献   

14.
The biological phosphorus removal process is often implemented at plants by the construction of an anaerobic bio-p tank in front of the traditional N removing plant configuration. However, biological phosphorus removal is also observed in plant configurations constructed only for nitrogen removal and simultaneous or post-precipitation. The operational experience with this "accidental" biological phosphorus removal is often mixed with quite a lot of frustration, as the process seems to come and go and hence behaves quite uncontrollably. The aim of this work is to develop ways of intentionally exploiting the biological phosphorus process by the use of instrumentation, control and automation to reduce the consumption of precipitants. Means to this end are first to calibrate a modified ASM2d model to a full-scale wastewater treatment plant (WWTP), including both biological and chemical phosphorus removal and a model of the sedimentation process. Second, based on the calibrated model a benchmark model is developed and various control strategies for biological phosphorus removal are tested. Experiences and knowledge gained from the strategies presented and discussed in this paper are vital inputs for the full-scale implementation of a control strategy for biological phosphorus removal at Aved?re WWTP, which is described in another paper. The two papers hence show a way to bridge the gap from model to full implementation.  相似文献   

15.
While the mechanism of biological phosphorus removal (BPR) and the need for volatile fatty acids (VFA) have been well researched and documented to the point where it is now possible to design a plant with a very reliable phosphorus removal process using formal flow sheets, BPR is still observed in a number of plants that have no designated anaerobic zone, which was considered essential for phosphorus removal. Some examples are given in this paper. A theory is proposed and then applied to solve problems with a shortage of VFA in the influent of the Henderson NV plant. Mixed liquor was fermented in the anaerobic zone, which resulted in phosphorus removal to very low levels. This paper will discuss some of the background, and some case histories and applications, and present a simple postulation as to the mechanism and efforts at modelling the results.  相似文献   

16.
Nightsoil and piggery wastes generally present high strength organics and nitrogen. This study evaluated the nitrogen removal characteristics with the existing and modified nightsoil and piggery waste treatment plants. The existing conventional plants showed 20 to 40% nitrogen removal, but the modification with SBR or MLE process could remove effectively both nitrogen and organics with the minimum COD/TN and alkalinity/TN ratios of 6 and 3.6, respectively. Nitrite nitrification and denitrification rates obtainable at higher nitrogen loads were faster than the rates of nitrate nitrification and denitrification resulting in less reactor volume requirement. However, the higher nitrogen loads increased the organic loads resulting in the reactor temperature inhibiting nitrification. Thus, a combined treatment with anaerobic digestion with the adjustment of influent bypass rates was proposed to reduce the reactor temperature and the external carbon requirement. The biological treatment could discharge about 1,100 mg/L soluble COD and 50 mg/L soluble nitrogen, respectively.  相似文献   

17.
A lab-scale sequencing batch reactor (SBR) and six full-scale wastewater treatment plants (WWTPs) performing enhanced biological phosphorus removal (EBPR) were surveyed. The abundance of Accumulibacter-related organisms in the full-scale plants was investigated using fluorescent in situ hybridization. Accumulibacter-related organisms were present in all of the full-scale EBPR plants, at levels ranging from 9% to 24% of total cells. The high percentage of Accumulibacter-related organisms seemed to be associated with configurations which minimize the nitrate recycling to the anaerobic zone and low influent BOD:TP ratios. PCR-based clone libraries were constructed from the community 16S rRNA gene plus the internally transcribed spacer region amplified from the SBR and five of the full-scale WWTPs. Comparative sequence analysis was carried out using Accumulibacter-related clones, providing higher phylogenetic resolution and revealing finer-scale clustering of the sequences retrieved from the SBR and full-scale EBPR  相似文献   

18.
Simultaneous increases in wastewater loads and effluent quality demand improved nutrient removal techniques. A simple technique for nitrogen removal is post-denitrification with methanol. The tradeoff between better effluent vs. methanol consumption is debatable. Methanol dosing is not only un-sustainable in the long term, but the cost of methanol is also becoming increasingly important. Urine contains 80% of the total nitrogen (N) and 50% of the phosphate in wastewater. Separate collection and treatment of urine could improve existing treatment works and diminish the need for post-denitrification. In this paper, a nitritation-denitrification process is proposed where 20-30% of the N in urine is removed with the COD available in urine. The treated urine consists of ammonium-nitrite, which is to be introduced to the anoxic zone of a conventional treatment plant. Optimal denitrification via nitrite is possible with COD from other wastewater sources. The case study presented here shows that 40-50% urine separation and improvement of the flow scheme would improve effluent quality from 19 to 10 g N/m3, which would eliminate the need for post-denitrification.  相似文献   

19.
The effects of sequentially combined carbon (SCC) using a symbiotic relationship of methanol and acetic acid on biological nutrient removal were investigated in both the continuous bench scale process consisting of an anoxic, an aerobic and a final settling tank and intensive batch tests. Compared to the use of respective sole carbon sources, methanol and acetic acid, the use of SCC showed superior removal efficiency of nitrogen (98.3%) and phosphorus (approximately 100%). Furthermore, the use of SCC enhanced simultaneous denitrification and phosphorus uptake by denitrifying phosphorus removal bacteria (DPB), resulting in the highest specific denitrification rate (SDNR) of 0.252 g NO3-N/g VSS/d achieved from the first anoxic zone with methanol of 30 mg COD/I. From batch tests performed under carbon limited anoxic conditions, 1 g of nitrate was used by DPB for P-uptake of 1.19 g. According to this result, 0.205 g NO3-N/g VSS/d was accomplished by normal denitrifiers using methanol, and 0.047 g NO3-N/g VSS/d was achieved by DPB. This research also demonstrated that the increase of poly-beta-hydroxybutyrate (PHB) stored by phosphorus accumulating organisms (PAOs) could be of importance in improving aerobic denitrification. The use of SCC produced the highest P-release in the anoxic zone, indicating the amount of PHB would be higher compared to the use of other sole carbons. Therefore, the SCC could be a very effective carbon source for the enhancement of aerobic denitrification as well.  相似文献   

20.
Systems in which denitrification follows nitrification (post-denitrification) copy the natural sequence of nitrogen removal. The disadvantage of post-denitrification, however, is that an external carbon source must be added to the denitrification reactor. In the concept discussed in this paper, excess sludge from a high loaded activated sludge plant is used as carbon source and as source of denitrifiers in a three-stage system. The sludge is fed into a anoxic reactor placed in between the nitrification reactor (e.g., trickling filter) and the final clarifier. Two different operation methods were investigated at a pilot-scale system set up at the Ingolstadt wastewater treatment plant Low nitrate effluent values were obtained at high sludge feeding rates, but at the expense of a significant increase in turbidity and NH4-N effluent concentrations. This problem could be solved by a reduction of the sludge feeding rate and by applying intermittent feeding. The effluent turbidity was kept at an acceptable level, but denitrification was relatively slow in progress. To achieve both low effluent turbidity and low nitrate discharge, a combination of pre- and post-denitrification is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号