共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
3.
根据60kg/m重轨的轧制质量要求,将其轧制孔型系统由原采用5个轧形孔型系统改为6个轨形孔型系统,提高了60kg/m重轨的轧制质量,减少了断辊。 相似文献
4.
5.
为了获得高精度和高质量的重轨,开发了新的万能孔型系统。万能孔型轧法优于传统的二辊孔型轧法。据初步统计,1985年西方世界每年采用万能孔型轧法生产的重轨产量达到300万t以上,占西方世界重轨产量的40%。 相似文献
6.
对60kg/m U71Mn重轨轧制全道次进行了三维热力耦合有限元模拟。轧辊建模时分别通过翻转和平移轧辊来实现轧件翻钢和侧向推钢过程;轧件的建模采用抽取中间截面网格拉伸的建模方法,既消除网格畸变的影响又使得前后数据得到继承。模拟结果表明:重轨轧制过程中存在严重的不均匀变形,铸坯横断面金属质点在轧制过程中沿轧制方向不同步;轨底部位金属沿轧制方向和轨底高度方向流动;轨腰部位金属沿轧制方向和宽度方向流动,其中心向轨底部位偏移;轨头金属沿轧制方向被延伸。人工打孔制造缺陷坯轧制试验的特征点位置变化与模拟结果吻合良好,验证了轧件在各道次的金属流变规律。所建立的金属在轧制过程中的位置对应关系可以为生产过程中轧制缺陷的溯源分析提供便利。 相似文献
7.
8.
9.
10.
本文在介绍苏联重轨的孔型系统的基础上,着重论述了采用六个轨形孔轧制60kg/m重轨的孔型系统选择、孔型设计特点及轧辊孔型配置方法。同时指出了孔型设计取得的成功经验及改进措施。 相似文献
11.
以鞍钢大型厂60 kg/m钢轨轧制过程为研究对象,通过MSC.Marc软件,建立三维弹塑性热-机耦合有限元模型,模拟分析了万能轧机轧制生产过程中轧件的变形和受力情况。模拟结果与实际结果吻合较好,应用所建立的有限元模型对万能轧制机组轧制过程进行模拟,获得了轧制过程轧件变形、受力以及速度等参数的分布情况。 相似文献
12.
3D thermo-meehanical coupled simulation of whole rolling process for 60 kg/m heavy rail was accomplished by FEM method. The finite element model, physical parameters of U75V and parameter setting of simulation were introduced in detail. The whole rolling process of 60 kg/m heavy rail was divided into 27 time cells to simulate respectively, and the model rebuilding and temperature inheritance method in intermediate pass were proceeded. Then, based on simulation results, the workpiece deformation result, metal flow, stress and strain of 60 kg/m heavy rail for typical passes were obtained. The temperature variation curves of whole rolling process for section key points of 60 kg/m heavy rail were plotted, and the temperature falling law of whole rolling process for 60 kg/m heavy rail was studied. In addition, temperature distribution of 60 kg/m heavy rail after whole rolling process was analyzed, and the results showed that temperature was highest at center of rail head and lowest at fringe of rail base. Moreover, the simulation results and measured results of rolling force for 60 kg/m heavy rail were compared, and the regularity was in good agreement. 相似文献
13.
14.
简要介绍了引进的铜带四辊精轧机,从轧机的厚度控制、板形控制、带材表面质量控制和轧机的状态轧制等各方面阐述了轧机的控制原理和方式,以及在高精度铜板带生产上的实践。 相似文献
15.
随着计算机在轧钢领域的广泛应用,重轨孔型设计利用计算机技术是今后发展的必然趋势,结合鞍钢大型厂的实际情况,编制了重轨孔型设计软件,应用该软件后,明显地提高了设计工作效率,加快了新产品的开发速度。介绍了该软件的编制方法、系统的功能及程序结构。 相似文献
16.
17.
For rail rolling by universal mill,a simplified three-dimensional theoretical model was built firstly.The kinematically admissible velocity field of the web,head,and base of rail was determined respectively;moreover,the corresponding strain rate field and the strength of shear strain rate were obtained.Then,the plastic deformation power of corresponding deformation zone,the power consumed on the velocity discontinuity surface,and the power generated by backward slip and forward slip were proposed.According ... 相似文献
18.
The U75V 60 kg/m heavy rail samples were heated to 900 ℃ in a resistance furnace for a fixed duration of 50 min. Under this condition, the samples were austenitized totally. Then, the samples were dragged out of furnace and cooled for 25 s in the open air. After that, the samples entered into the air spraying channel, and were cooled from the top and both sides by compressed air. During this period, main technical parameters were changed such as the distance between spray nozzles and surface of rail head, air pressure, air spraying time and air temperature. So under laboratory condition, optimal heat-treating parameters of U75V 60 kg/m heavy rail were determined as the distance between spray nozzles and surface of rail head of 15 mm, air pressure of 0.26 MPa, cooling time of 80 s, and air temperature of 28 ℃. The surface temperature at different positions of heavy rail was measured before and after heat treatment, and the temperature changing law was determined. The self tempering occurred on the surface of rail head after heat treatment, and the tempering temperature became the largest (about 3 min) after heat treatment, separately 528, 524 and 536 ℃ at the center, top fillet and bottom fillet of rail head. The heavy rail was cooled in open air after heat treatment; during this period, the temperature gap on the surface of heavy rail became smaller and smaller, and was reduced to zero when being cooled for 20 min. 相似文献