首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
我国高速铁路的发展要求重轨生产必须实现高精度轧制.对使用半万能成品孔和全万能成品孔轧制高精度重轨产品的尺寸和形状精度进行了分析研究,提出轧制高精度重轨应采用全万能成品孔型.借助有限元分析软件ANSYS/LS-DYNA,对采用全万能成品孔来轧制高精度重轨的变形情况进行了模拟,模拟结果也证实了采用全万能成品孔的可行性.  相似文献   

2.
介绍了成品孔型的选择、采用全万能成品孑L型轧制60 kg/m重轨生产线的工艺布置方案及主要生产工艺.并对半万能成品孔型和全万能成品孔型轧制60 kg/m重轨的生产工艺就压下系数分配进行了分析和对比,得出使用全万能成品孔型,轧件在万能孔型中轨头与轨底及轨腰的压下系数相差很小,轧件变形均匀,各万能机架间的压下系数分配更合理,有利于提高重轨的表面质量和尺寸精度,提高轧制效率.  相似文献   

3.
根据60kg/m重轨的轧制质量要求,将其轧制孔型系统由原采用5个轧形孔型系统改为6个轨形孔型系统,提高了60kg/m重轨的轧制质量,减少了断辊。  相似文献   

4.
对使用两辊成品孔型、半万能成品孔型和万能成品孔型轧制高精度重轨的产品尺寸精度和形状精度进行了研究,在生产条件下进行两辊成品孔型的轧制实验,在实验室进行半万能成品孔型和万能成品孔型轧制高度重轨的实验,三种孔型均可以轧制出满足200km/h2和300km/h标准要求的高精度重轨,成材率和尺寸精度依次为万能孔型和两辊孔型。  相似文献   

5.
为了获得高精度和高质量的重轨,开发了新的万能孔型系统。万能孔型轧法优于传统的二辊孔型轧法。据初步统计,1985年西方世界每年采用万能孔型轧法生产的重轨产量达到300万t以上,占西方世界重轨产量的40%。  相似文献   

6.
对60kg/m U71Mn重轨轧制全道次进行了三维热力耦合有限元模拟。轧辊建模时分别通过翻转和平移轧辊来实现轧件翻钢和侧向推钢过程;轧件的建模采用抽取中间截面网格拉伸的建模方法,既消除网格畸变的影响又使得前后数据得到继承。模拟结果表明:重轨轧制过程中存在严重的不均匀变形,铸坯横断面金属质点在轧制过程中沿轧制方向不同步;轨底部位金属沿轧制方向和轨底高度方向流动;轨腰部位金属沿轧制方向和宽度方向流动,其中心向轨底部位偏移;轨头金属沿轧制方向被延伸。人工打孔制造缺陷坯轧制试验的特征点位置变化与模拟结果吻合良好,验证了轧件在各道次的金属流变规律。所建立的金属在轧制过程中的位置对应关系可以为生产过程中轧制缺陷的溯源分析提供便利。  相似文献   

7.
重轨生产技术的现状和发展   总被引:1,自引:0,他引:1  
  相似文献   

8.
用 6个轨形孔代替 5个轨形孔轧制UIC 60kgm钢轨 ,降低了断辊、掰辊环及扭脖子事故 ,同时使轧件轧痕及规格不合格量大大减少 ,提高了UIC 60kgm钢轨的出口合格率。  相似文献   

9.
10.
本文在介绍苏联重轨的孔型系统的基础上,着重论述了采用六个轨形孔轧制60kg/m重轨的孔型系统选择、孔型设计特点及轧辊孔型配置方法。同时指出了孔型设计取得的成功经验及改进措施。  相似文献   

11.
以鞍钢大型厂60 kg/m钢轨轧制过程为研究对象,通过MSC.Marc软件,建立三维弹塑性热-机耦合有限元模型,模拟分析了万能轧机轧制生产过程中轧件的变形和受力情况。模拟结果与实际结果吻合较好,应用所建立的有限元模型对万能轧制机组轧制过程进行模拟,获得了轧制过程轧件变形、受力以及速度等参数的分布情况。  相似文献   

12.
3D thermo-meehanical coupled simulation of whole rolling process for 60 kg/m heavy rail was accomplished by FEM method. The finite element model, physical parameters of U75V and parameter setting of simulation were introduced in detail. The whole rolling process of 60 kg/m heavy rail was divided into 27 time cells to simulate respectively, and the model rebuilding and temperature inheritance method in intermediate pass were proceeded. Then, based on simulation results, the workpiece deformation result, metal flow, stress and strain of 60 kg/m heavy rail for typical passes were obtained. The temperature variation curves of whole rolling process for section key points of 60 kg/m heavy rail were plotted, and the temperature falling law of whole rolling process for 60 kg/m heavy rail was studied. In addition, temperature distribution of 60 kg/m heavy rail after whole rolling process was analyzed, and the results showed that temperature was highest at center of rail head and lowest at fringe of rail base. Moreover, the simulation results and measured results of rolling force for 60 kg/m heavy rail were compared, and the regularity was in good agreement.  相似文献   

13.
借助有限元分析软件MSC.Marc,采用三维热-机耦合弹塑性有限元模型,对钢轨万能精轧过程进行模拟分析。以UR-EF-UF三机架连轧过程为研究对象,建立变形过程优化模型。将轧件尺寸模拟结果与实验结果进行比较,两者吻合较好,验证了模型的准确性。对轧件变形过程、轧制接触状态、应力应变分布以及速度变化等模拟结果进行了讨论分析,揭示了万能轧机各道次的加工特点和轧件在连轧变形过程的变形规律。  相似文献   

14.
简要介绍了引进的铜带四辊精轧机,从轧机的厚度控制、板形控制、带材表面质量控制和轧机的状态轧制等各方面阐述了轧机的控制原理和方式,以及在高精度铜板带生产上的实践。  相似文献   

15.
随着计算机在轧钢领域的广泛应用,重轨孔型设计利用计算机技术是今后发展的必然趋势,结合鞍钢大型厂的实际情况,编制了重轨孔型设计软件,应用该软件后,明显地提高了设计工作效率,加快了新产品的开发速度。介绍了该软件的编制方法、系统的功能及程序结构。  相似文献   

16.
60 kg/m重轨冷却过程中的温度场有限元模拟及分析   总被引:2,自引:0,他引:2  
 采用ANSYS热模拟以及对实际温度连续测量实验,研究了重轨在步进式冷床上冷却过程的温度分布。重轨表面温度、矫前温度及相对应的冷却时间计算值与实测结果基本相符。模拟结果表明,重轨断面温差最大值达到9112 ℃,而冷却到矫前温度时温度分布均匀,断面温差不超过5 ℃,断面最大温差随着换热系数的增大而增大。在重轨断面温差出现最大值之前,适当减小冷却速度,可使断面温度分布均匀,并且可通过增设风机有效提高冷床的冷却能力。  相似文献   

17.
For rail rolling by universal mill,a simplified three-dimensional theoretical model was built firstly.The kinematically admissible velocity field of the web,head,and base of rail was determined respectively;moreover,the corresponding strain rate field and the strength of shear strain rate were obtained.Then,the plastic deformation power of corresponding deformation zone,the power consumed on the velocity discontinuity surface,and the power generated by backward slip and forward slip were proposed.According ...  相似文献   

18.
The U75V 60 kg/m heavy rail samples were heated to 900 ℃ in a resistance furnace for a fixed duration of 50 min. Under this condition, the samples were austenitized totally. Then, the samples were dragged out of furnace and cooled for 25 s in the open air. After that, the samples entered into the air spraying channel, and were cooled from the top and both sides by compressed air. During this period, main technical parameters were changed such as the distance between spray nozzles and surface of rail head, air pressure, air spraying time and air temperature. So under laboratory condition, optimal heat-treating parameters of U75V 60 kg/m heavy rail were determined as the distance between spray nozzles and surface of rail head of 15 mm, air pressure of 0.26 MPa, cooling time of 80 s, and air temperature of 28 ℃. The surface temperature at different positions of heavy rail was measured before and after heat treatment, and the temperature changing law was determined. The self tempering occurred on the surface of rail head after heat treatment, and the tempering temperature became the largest (about 3 min) after heat treatment, separately 528, 524 and 536 ℃ at the center, top fillet and bottom fillet of rail head. The heavy rail was cooled in open air after heat treatment; during this period, the temperature gap on the surface of heavy rail became smaller and smaller, and was reduced to zero when being cooled for 20 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号