首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We have characterized the specific binding of glucagon in hepatocytes isolated from two teleost species, the American eel (Anguilla rostrata) and the brown bullhead (Ictalurus nebulosus). Specific glucagon binding was 9.3 and 10.7% in bullhead and eel hepatocytes respectively, after a 2-h incubation at 12 degrees C. Curvilinear Scatchard plots suggest the presence of two classes of binding sites with apparent dissociation constants (Kd) of 1.97 nM (high affinity) and 17.3 nM (low affinity) for bullhead and 2.68 and 22.9 nM for eel cells. The number of high-affinity binding sites per cell was significantly higher in the eel (10,413) than in the bullhead (3811). The number of high-affinity insulin-binding sites was approximately two times higher than that for glucagon in bullheads and the opposite in the eel hepatocytes. In competition experiments, insulin did not displace 125I-labelled glucagon binding in the hepatocytes of either species, while glucagon-like peptide-1(7-37) (GLP-1) displaced glucagon but only at high concentrations, suggesting separate glucagon- and GLP-1-binding sites. The rate of dissociation of hepatocyte-bound 125I-labelled glucagon was similar for both species. Preincubation of hepatocytes in 100 nM glucagon decreased the number of high-affinity glucagon-binding sites by approximately 55% in both species, while the Kd values remained unchanged. Glucagon bound to the cell surface is internalized by fish hepatocytes. These properties indicate that the glucagon binding to hepatocytes of these two teleost species is similar to that reported for mammalian hepatocytes.  相似文献   

2.
3.
Considerable progress has been made in the understanding of transduction mechanisms in olfactory receptor neurons (ORNs) over the last decade. Odorants pass through a mucus interface before binding to odorant receptors (ORs). The molecular structure of many ORs is now known. They belong to the large class of G protein-coupled receptors with seven transmembrane domains. Binding of an odorant to an OR triggers the activation of second messenger cascades. One second messenger pathway in particular has been extensively studied; the receptor activates, via the G protein Golf, an adenylyl cyclase, resulting in an increase in adenosine 3',5'-cyclic monophosphate (cAMP), which elicits opening of cation channels directly gated by cAMP. Under physiological conditions, Ca2+ has the highest permeability through this channel, and the increase in intracellular Ca2+ concentration activates a Cl- current which, owing to an elevated reversal potential for Cl-, depolarizes the olfactory neuron. The receptor potential finally leads to the generation of action potentials conveying the chemosensory information to the olfactory bulb. Although much less studied, other transduction pathways appear to exist, some of which seem to involve the odorant-induced formation of inositol polyphosphates as well as Ca2+ and/or inositol polyphosphate -activated cation channels. In addition, there is evidence for odorant-modulated K+ and Cl- conductances. Finally, in some species, ORNs can be inhibited by certain odorants. This paper presents a comprehensive review of the biophysical and electrophysiological evidence regarding the transduction processes as well as subsequent signal processing and spike generation in ORNs.  相似文献   

4.
A number of thiol-reactive agents induce repetitive Ca2+ spiking in cells by a mechanism thought to involve sensitization of the inositol 1,4,5-trisphosphate receptor (IP3R). To further define the basis of this interaction, we have studied the effect of several thiol-reactive agents on [3H]IP3 binding, IP3-gated channel activity, and conformation of the IP3R in membranes from hepatocytes, cultured WB rat liver epithelial cells, and cerebellum microsomes. At 4 degrees C, the organomercurial thiol-reactive agent mersalyl markedly stimulates (3-4fold) [3H]IP3 binding to permeabilized hepatocytes. The closely related molecule, thimerosal, has only a small stimulatory effect under these conditions, and GSSG or N-ethylmaleimide are without effect. The stimulatory effect of mersalyl was associated with a decrease in Kd of the IP3R with no change in Bmax. Mersalyl was without effect on detergent-solubilized hepatocyte binding sites or on the [3H]IP3 binding activity of cerebellum microsomes. In contrast to thimerosal, which potentiates IP3-mediated Ca2+ release, mersalyl blocked IP3-gated Ca2+ channels. Mersalyl pretreatment of WB membranes altered the pattern of immunoreactive receptor fragments generated upon subsequent cleavage of the receptor with proteinase K. This effect was not reproduced by thimerosal and was also not observed in experiments on cerebellum microsomes. We conclude that the WB cell and brain IP3 receptors are differently regulated by modification of thiol groups. Reaction of the WB cell IP3 receptor with mersalyl alters its conformation and modifies the accessibility of sites on the protein that are cleaved by proteinase K. In the presence of mersalyl, the receptor has high affinity for IP3 but is inactive as a Ca2+ channel. This contrasts with the high affinity receptor/active Ca2+ channel induced by thimerosal, suggesting that even closely related thiol agents may interact at different thiol groups.  相似文献   

5.
Amino acid and bile salt odorants are detected by zebrafish with relatively independent odorant receptors, but the transduction cascade(s) subsequently activated by these odorants remains unknown. Electro-olfactogram recording methods were used to determine the effects of two drugs, reported to affect phospholipase C (PLC)/inositol tripohsphate (IP3)-mediated olfactory transduction in other vertebrate species, on amino acid and bile salt-evoked responses. At the appropriate concentrations, either an IP3-gated channel blocker, ruthenium red (0.01-0.1 microM), or a PLC inhibitor, neomycin (50 microM), reduced amino-acid-evoked responses to a significantly greater extent than bile salt-evoked responses. Excised patch recording techniques were used to measure the affects of these drugs on second-messenger-activated currents. Ruthenium red and neomycin are both effective blockers of the olfactory cyclic nucleotide-gated (CNG) current. Both drugs blocked the CNG channel in a voltage-dependent and reversible manner. No IP3-activated currents could be recorded. The differential effects of ruthenium red and neomycin on odor-evoked responses suggest the activation of multiple transduction cascades. The nonspecific actions of these drugs on odor-activated transduction pathways and our inability to record an IP3-activated current do not permit the conclusion that zebrafish, like other fish species, use a PLC/IP3-mediated transduction cascade in the detection of odorants.  相似文献   

6.
The influence of serotonin (5-HT) on neuronal function is mediated by regulation of receptor-coupled intracellular signal transduction pathways, and the therapeutic action of 5-HT selective reuptake inhibitors (SSRIs), as well as other types of antidepressants, most likely involves regulation of these intracellular pathways. The cyclic adenosine monophosphate (cAMP) second messenger system is one pathway that could be involved in antidepressant action. Chronic administration of antidepressants, including SSRIs, up-regulates the cAMP pathway at several levels, including increased expression of the cAMP response element binding protein (CREB). Among the multiple target genes that could be regulated by CREB and that could be involved in antidepressant actions and the pathophysiology of depression in brain-derived neurotrophic factor (BDNF). Stress decreases the expression of BDNF, and reduce levels of this neurotrophic factor could contribute to the atrophy and decreased function of stress-vulnerable hippocampal neurons. In contrast, antidepressant treatment increases the expression of BDNF in hippocampus, and could thereby reverse the stress-induced atrophy of neurons or protect these neurons from further damage. Up-regulation of the cAMP and BDNF systems has resulted in a novel model for the mechanism of action of antidepressants and new targets for the development of therapeutic agents.  相似文献   

7.
Na+/taurocholate (Na+/TC) cotransport in hepatocytes is mediated primarily by Na+/TC cotransporting polypeptide (Ntcp), and cyclic adenosine monophosphate (cAMP) stimulates Na+/TC cotransport by inducing translocation of Ntcp to the plasma membrane. The aim of the present study was to determine if Ntcp is a phosphoprotein and if cAMP alters Ntcp phosphorylation. Freshly prepared hepatocytes from rat livers were incubated with carrier-free 32PO4 for 2 hours, followed by incubation with 10 micromol/L 8-chlorophenylthio adenosin 3':5'-cyclic monophosphate (CPT-cAMP) for 15 minutes. Subcellular fractions isolated from 32P-labeled hepatocytes were subjected to immunoprecipitation using Ntcp antibody, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and autoradiography to determine if Ntcp is phosphorylated. Ntcp immunoprecipitated from plasma membranes isolated from nonlabeled hepatocytes was subjected to immunoblot analysis using anti-phosphoserine, anti-phosphothreonine, or anti-phosphotyrosine antibody to determine whether Ntcp is a serine, threonine, or tyrosine phosphoprotein. Hepatocytes were loaded with bis-(2-amino-5-methylphenoxy)-ethane-N,N,N',N'-tetraacetic acid (MAPTA), a Ca2+ buffering agent, and the effect of CPT-cAMP on TC uptake, cytosolic [Ca2+], and ntcp phosphorylation and translocation was determined. In addition, the effect of cAMP on protein phosphatases 1 and 2A (PP1/2A) was determined in homogenates and plasma membranes obtained from CPT-cAMP-treated hepatocytes. Phosphorylation study showed that phosphorylated Ntcp is detectable in plasma membranes, and cAMP treatment resulted in dephosphorylation of Ntcp. Immunoblot analysis with phosphoamino antibodies revealed that Ntcp is a serine/threonine, and not a tyrosine, phosphoprotein, and cAMP inhibited both serine and threonine phosphorylation. In MAPTA-loaded hepatocytes, CPT-cAMP failed to stimulate TC uptake, failed to increase cytosolic [Ca2+], and failed to induce translocation and dephosphorylation of Ntcp. cAMP did not alter the activity of PP1/2A in either homogenates or in plasma membranes. Taken together, these results suggest that Ntcp is a serine/threonine phosphoprotein and is dephosphorylated by cAMP treatment. Activation of PP1/2A is not involved in cAMP-mediated dephosphorylation of Ntcp. Both translocation and dephosphorylation of Ntcp may be involved in the regulation of hepatic Na+/TC cotransport.  相似文献   

8.
Sulfhydryl reagents such as tert-butyl hydroperoxide (TBHP) have been shown to increase cytosolic Ca2+ concentration ([Ca2+]i) in rat hepatocytes in a way that resembles responses to Ca(2+)-mobilizing hormones (Saikada, I., Thomas, A. P., and Farber, J. L. (1991) J. Biol. Chem. 266, 717-722; Rooney, T. A., Renard, D. C., Sass, E. J., and Thomas, A. P. (1991) J. Biol. Chem. 266, 12272-12282) and to increase the amount of Ca2+ released by inositol 1,4,5-trisphosphate ((1,4,5)IP3) from permeable rat liver cells (Rooney et al., 1991, op. cit.; Missiaen, L., Taylor, C. W., and Berridge, M. J. (1991) Nature 352, 241-244; Renard, D. C., Seitz, M. B., and Thomas, A. P. (1992) Biochem. J. 284, 507-512). The effects of sulfhydryl reagents were studied in fura-2-injected rat and guinea pig hepatocytes and compared with the actions of cAMP (Burgess, G. M., Bird, G. St. J., Obie, J. F., and Putney, J. W., Jr. (1991) J. Biol. Chem. 261, 4772-4781). In rat liver cells, the increases in [Ca2+]i induced by TBHP and thimerosal were prevented by microinjection of the cells with the (1,4,5)IP3 receptor antagonist heparin. In guinea pig hepatocytes, TBHP was not able to increase [Ca2+]i unless the cells were pretreated with angiotensin II to raise endogenous levels of (1,4,5)IP3 or were first injected with a sub-threshold concentration of inositol 2,4,5-trisphosphate ((2,4,5)IP3). The responses to TBHP in (2,4,5)IP3-injected guinea pig cells were also blocked by heparin. In many respects, the actions of TBHP appeared to be similar to those of cAMP, which has previously been shown to increase sensitivity to (1,4,5)IP3 in intact guinea pig hepatocytes (Burgess et al., 1991, op. cit.). TBHP also mimicked the effect of cAMP-dependent kinase (PKA) in permeabilized guinea pig hepatocytes by increasing the amount of Ca2+ released by (1,4,5)IP3. The responses to TBHP and cAMP in (2,4,5)IP3-injected guinea pig hepatocytes differed, however, in that the increase in [Ca2+]i evoked by elevating intracellular cAMP was greatly reduced by Wiptide, an inhibitor of PKA, while Wiptide had no effect on the Ca2+ transients induced by TBHP. This provides evidence that the sensitizing effect of TBHP is not mediated by PKA and is more likely to be a direct effect on the inositol trisphosphate receptor. It is possible, however, that the sulfhydryl reagents and PKA act on a common regulatory site on the receptor protein.  相似文献   

9.
10.
Social behaviors of most mammals are profoundly affected by chemical signals, pheromones, exchanged between conspecifics. Pheromones interact with dendritic microvilli of bipolar neurons in the vomeronasal organ (VNO). To investigate vomeronasal signal transduction pathways, microvillar membranes from porcine VNO were prepared. Incubation of such membranes from prepubertal females with boar seminal fluid or urine results in an increase in production of inositol-(1, 4, 5)-trisphosphate (IP3). The dose response for IP3 production is biphasic with a GTP-dependent component at low stimulus concentrations and a nonspecific increase in IP3 at higher stimulus concentrations. The GTP-dependent stimulation is mimicked by GTPgammaS and blocked by GDPbetaS. Furthermore, the GTP-dependent component of the stimulation of IP3 production is sex specific and tissue dependent. Studies with monospecific antibodies reveal a G alpha(q/11)-related protein in vomeronasal neurons, concentrated at their microvilli. Our observations indicate that pheromones in boar secretions act on vomeronasal neurons in the female VNO via a receptor mediated, G protein-dependent increase in IP3. These observations set the stage for further investigations on the regulation of stimulus-excitation coupling in vomeronasal neurons. The pheromone-induced IP3 response also provides an assay for future purification of mammalian reproductive pheromones.  相似文献   

11.
The administration of an excess of choline for 3 weeks is able to delay the proliferative response to partial hepatectomy (PH) in female rats. Choline feeding can affect the phospholipid composition of cell membranes and, as a consequence, the transduction of the mitogenic signals. On these bases, we studied the turnover of phosphatidylinositol-4,5-biphosphate (PIP2) in the regenerating liver of female rats. The hydrolysis of PIP2 is catalysed by a specific phospholipase C (PL-C) and it generates the second messenger molecules, namely diacylglycerol and inositol-1,4,5-triphosphate (IP3). Our results showed that the administration of an excess of choline to females was able to reduce the PL-C activity and the membrane IP3 content in the quiescent liver. Both parameters remained lower than controls during liver regeneration, even if they were higher 1 and 2 h after PH in comparison with the quiescent liver, in choline-fed females. These data suggest that the delay in the liver regeneration by choline is due, at least in part, to the alteration in the pathway of PIP2 turnover for the transduction of mitogenic signals.  相似文献   

12.
Effects of signal transduction pathways in TCDD-induced neoplastic transformation of human cells were assessed with respect to PLC-coupled signaling pathways, adenylyl cyclase-mediated responses and PKC isozyme expressions. A lower stimulation of the intracellular free calcium levels with exposure to extracellular ATP or histamine was observed in the transformed cells, as compared to the parental cells. While the steady-state level of IP3 was higher in the transformed cells, the magnitude of stimulation of IP3 generation by ATP or histamine was significantly lower in the transformed cells than the parental cells. These results indicate that a downregulation PLC-coupled signaling pathways may be involved in the TCDD-induced transformation of human cells. While the steady-state levels of cAMP accumulation were similar between the two cell lines, treatment of PGE2, a potent differentiation inducer, stimulated a higher accumulation of cAMP in the parental cells but isoproterenol, a typical beta-adrenergic agonist, did not induce a significant difference between the two cell lines. These results suggest that desensitization of cAMP-mediated response to extracellular signals including differentiation signals may be associated with a possible mechanism of the carcinogenesis. Elevated expression of PKC-alpha, -gamma, -zeta, -epsilon, -lambda, and -tau were observed in TCDD-transformed cells, indicating a possible association of altered expression of PKC isozymes with TCDD-induced transformation of human cells. The present study demonstrates that alterations of signal transduction pathways are involved in the TCDD-induced transformation of human cells and provides a valuable basis to investigate effects of signaling pathway as a possible mechanism of TCDD-induced carcinogenesis in human cells.  相似文献   

13.
Ocular surface mucin is secreted from both goblet cells in the conjunctival epithelium and corneal epithelial cells. To clarify its mechanism of secretion in corneal epithelial cells, a rat cornea organ culture system was used to evaluate the second messenger roles of cyclic-AMP (cAMP), cyclic-GMP (cGMP) and protein kinase C (PKC) in modulating mucin-like glycoprotein secretion. Rat cornea sections (3 mm diameter) were cultured in TC-199 medium, and radiolabeled with sodium sulfate for 18 hr. After washing, the corneas were treated with various second messenger modulating agents for 30 min. The culture media were reacted with Dolichos biflorus (DBA)-lectin, and mucin-like glycoprotein was isolated. Then the radioactivity of DBA-binding mucin-like glycoprotein was isolated. Then the radioactivity of DBA-binding mucin-like glycoprotein was measured. There was a time-dependent increase in mucin-like glycoprotein was measured. There was a time-dependent increase in mucin-like glycoprotein secretion, whereas after corneal epithelial debridement the secretion was markedly inhibited by 81%. Mucin-like glycoprotein secretion was stimulated in a dose-dependent manner following elevation of cAMP levels by exposure to either forskolin, dibutyryl cAMP or 3-isobutyl-1-methylxanthine. Concomitant exposure to the cAMP dependent protein kinase inhibitor, KT5720 completely inhibited their stimulatory effects. Neither exposure to dibutyryl cGMP nor nitroprusside affected mucin-like glycoprotein secretion. Stimulation by PKC, phorbol 12, 13-dibutyrate (PDBu) also increased mucin-like glycoprotein secretion in a dose-dependent fashion. The PKC inhibitor, calphostin C completely inhibited the stimulation by PDBu of mucine-like glycoprotein secretion. These results demonstrate that corneal epithelial cells secrete mucin-like glycoprotein, which is mediated by cAMP and PKC signal transduction pathways.  相似文献   

14.
While many autonomic and metabolic defects associated with genetic obesity in the Zucker rat are corrected by adrenalectomy (Adx), brain adrenoceptor function has not been examined in this context. Here, 3 weeks after Adx or sham surgery, brains of 11 weeks old lean (Fa/Fa) and obese (fa/fa) male Zucker rats were assayed for alpha 1-([3H]prazosin; [3H]PRZ) and alpha 2-adrenoceptor ([3H]paraminoclonidine; [3H]PAC) binding by autoradiography. By genotype, obese rats had 19-256% higher [3H]PRZ binding than lean rats in the amygdala (central [ACN], basolateral [ABL], basomedial [ABM] and medial [MAN] nuclei [n.]), hypothalamus (dorsomedial n. [DMN] and lateral [LH]) and somatosensory cortex. In the ABL and ACN, increased maximal binding (Bmax) in obese rats was associated with decreased affinity (increased Kd). Three weeks after surgery, sham-operated obese rats gained 27% more weight than lean rats but lean and obese Adx rats gained the same amount of weight. Adx reduced [3H]PRZ binding in both lean and obese rats by 37-70% in the amygdala (ABM, ACN, MAN) compared to sham-operated rats. But, Adx selectively reduced [3H]PRZ binding only in lean rats in the ABL, DMN, ventromedial hypothalamic n. (VMN) and ventroposteromedial thalamic n. In most areas, decreases in maximal binding (Bmax) associated with Adx were accompanied by decreases in Kd. Unlike [3H]PRZ binding, there was no consistent genotype difference in [3H]PAC binding although Adx was followed by increased binding in obese and decreased binding in lean rats in the ABL. In only the VMN, obese rats had a 21% higher alpha 2- to alpha 1-adrenoceptor ratio than lean rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Eight dopamine receptor-like cDNA clones were isolated from the carp (Cyprinus carpio) retina and four dopamine receptor-like cDNA clones were isolated from the European eel (Anguilla anguilla) retina. These cDNA clones show high sequence and structural homology to the known dopamine receptor subtypes. The sequence similarity and phylogenetic analysis revealed that five subtypes (D1A3, D1A4, D1B, D1C and D1X) in the carp retina and four subtypes (D1A1, D1A2, D1B and D1C) in the eel retina are D1-like receptor subtypes, and three (D2, D4A and D4B) in the carp retina are D2-like receptor subtypes; no D2-like receptor was found in the eel. Carp D1A3 and D1A4, carp D4A and D4B, and eel D1A1 and D1A2 are highly homologous pairs of receptors which show significant, domain-specific differences to each other and to their species homologues. The structure of the third cytoplasmic loop in the carp D1X receptor was particularly different from the other D1-like receptors. The implications of these structural differences in terms of dopamine receptor activation and signalling are discussed. It is suggested that the known diverse physiological and pharmacological effects of dopamine on the retinal neurones are likely to be mediated through these multiple receptor subtypes which may be coupled to different signal transduction pathways.  相似文献   

16.
ErbB3 is an epidermal growth factor receptor-related type I tyrosine kinase receptor capable, in conjunction with ErbB2 or epidermal growth factor receptor, of transmitting proliferative and differentiative signals in a variety of cell types. We previously showed that ErbB3 messenger RNA and protein increase in cultured hepatocytes during the first 12 h in culture, as does the binding of heregulin beta1, a ligand for ErbB3. Insulin inhibits the increase in heregulin beta1 binding, as well as the increase in ErbB3 messenger RNA and protein. Two models of insulin deficiency in vivo (diabetes and fasting) demonstrated elevated levels of hepatic ErbB3 protein, strengthening the relevance of our observations in vitro. Using chemical activators or antagonists, we sought to identify the signaling pathways that link insulin to ErbB3 expression. The PI-3 kinase inhibitors, wortmannin and LY294002, completely blocked the inhibition of ErbB3 protein expression by insulin, suggesting a role for PI-3 kinase in the regulation of this growth factor receptor. Rapamycin, an inhibitor of p70 S6 kinase, an enzyme downstream of PI-3 kinase, failed to block the effect of insulin on ErbB3 expression. These results suggest a complex regulatory paradign for ErbB3 that includes PI-3 kinase and may be linked, via insulin, to the metabolic status of the animal.  相似文献   

17.
Peroxisome proliferators induce hepatic peroxisome proliferation and hepatic tumors in rodents. These chemicals increase the expression of the peroxisomal beta-oxidation pathway and the cytochrome P-450 4A family, which metabolize lipids, including eicosanoids. Peroxisome proliferators also induce increased cell proliferation in vivo. However, peroxisome proliferators are only weakly mitogenic and are not comitogenic with epidermal growth factor (EGF) in cultured hepatocytes. Our earlier studies found that the peroxisome proliferator ciprofibrate is comitogenic with eicosanoids. We therefore hypothesized that the comitogenicity of the peroxisome proliferator ciprofibrate and eicosanoids may result from a synergistic increase of the DNA binding activity of AP-1. Primary rat hepatocytes were cultured on collagen gels in serum-free L-15 medium with ciprofibrate, eicosanoids, and/or growth factors. The DNA binding activity of AP-1 was determined in nuclear protein extracts by electrophoretic mobility shift assay. The DNA binding activity of AP-1 was not induced by ciprofibrate or eicosanoids alone, but the addition of eicosanoids along with ciprofibrate increased the induction of DNA binding activity of AP-1 at 30 min and 2 h after exposure. The combination of ciprofibrate and PGF2alpha blocked the inhibitory effect of transforming growth factor (TGF)-beta on the DNA binding activity of AP-1 induced by EGF. These results show that the peroxisome proliferator ciprofibrate and eicosanoids co-stimulate the DNA binding activity of AP-1 and suggest that changes in eicosanoid concentrations may modulate mitogenic signal transduction pathways by the peroxisome proliferator ciprofibrate.  相似文献   

18.
19.
Cisplatin resistance, induced in murine fibrosarcoma cells (SSK) in vitro or in vivo by low-dose irradiation, can be overcome by activation of the cyclic GMP(cGMP)-dependent transduction pathway. This is mediated either by stimulating cGMP formation with sodium nitroprusside or by replacing cGMP with a selective activator of the cGMP-dependent protein kinase, 8-bromo-cGMP. The cyclic AMP-dependent transduction pathway is not involved in cisplatin resistance. Instead, activation of cAMP sensitises both parental and resistant SSK cells equally to the action of cisplatin. There is a 1.8 to 2.5-fold increase in drug toxicity, depending on the activating agent. Enhancement of cisplatin sensitivity is induced by specific inhibition of cAMP hydrolysis, increase in cAMP formation or by increasing the activation potential to cAMP-dependent protein kinase by specific cAMP analogues. Cells that have lost cisplatin resistance respond to cGMP- or cAMP-elevating agents in the same way as the parental SSK cells. The radiation sensitivity is unchanged in all cell lines, even after activation of cAMP or cGMP. These results suggest that specific DNA repair pathways are altered by radiation but affected only in cisplatin damage repair, which is regulated by cGMP. Although there is ample cooperativity and interaction between the cAMP- and the cGMP-dependent transduction pathways, specific substrate binding by cGMP appears to play an important role in radiation-induced cisplatin resistance.  相似文献   

20.
Cultured hepatocytes of silver eel actively secreted only chylomicron-like lipoprotein. The rate of secretion per mg cellular protein per 24 hr was 2.2 times higher compared with that by yellow eel hepatocytes. Silver eel hepatocytes secreted lipids 2.5 times higher through the lipoprotein than yellow eel hepatocytes. Main lipid was triacylglycerol in either secreted lipoprotein and composition of apolipoproteins of both secreted lipoproteins was the same. The incorporation of 3H-leucine into the lipoprotein secreted by silver eel hepatocytes was 2.4 times higher, but that of 14C-acetate was not significantly different. Protein and lipids composition of plasma lipoproteins of silver eel was significantly higher and lower compared with those of yellow eel, respectively. We suggest that the secreted lipoprotein of silver eel hepatocytes transport much more lipids to other tissues than that of yellow eel hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号