首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bread is a major staple food consumed daily in all parts of the world. A significant part of the human population cannot tolerate gluten, a storage protein found in wheat, rye and barley, and therefore, products made from alternative cereals are required. During this study, the bread-making potential of seven gluten-free flours, wheat and wholemeal wheat flour was compared. Fermentation potential of the different flours was determined, showing that dough development height of gluten-free and wholemeal wheat samples was lower than for wheat and oat flour. Apart from standard bread quality parameters such as loaf-specific volume and physical crumb texture, also water activity and shelf life have been determined. The shelf life of gluten-free breads was reduced compared to wheat bread. Aroma profiles were evaluated by a trained panel. Wheat, oat and wholemeal wheat breads were liked moderately, while the remaining samples had lower liking scores. Crumb grain characteristics were investigated using image analysis, and microstructure was observed by scanning electron microscopy. Overall, only breads produced from oat flour were of similar quality to wheat bread, and the utilization of buckwheat, rice, maize, quinoa, sorghum and teff flours resulted in breads of inferior quality.  相似文献   

2.
Bread represents a suitable food product for the addition of functional ingredients, such as the cholesterol-lowering dietary fibre oat β-glucan and the prebiotic inulin. Therefore, these soluble fibres were incorporated into wheat as well as gluten-free bread, and their effects on rheological properties of the dough, on bread quality and on crumb microstructure were compared. The level of remaining β-glucan as well as its molecular weight was determined using an enzyme kit and size-exclusion chromatography. The addition of oat β-glucan resulted in a higher water addition level, whereas incorporation of inulin had the opposite effect. Rheological testing showed that the incorporation of oat β-glucan results in a more elastic dough. The baking characteristics mainly affected by fibre addition were volume and crust colour, with inulin increasing and oat β-glucan decreasing loaf-specific volume in the gluten-free breads. Inulin led to a darkening of the crust of both bread types, whereas addition of oat β-glucan resulted in a lighter crust of gluten-free bread. Oat β-glucan softened the crumb of gluten-free bread, but had the opposite effect on wheat bread. Inulin resulted in an increased crumb hardness as well as the rate of staling. Beta-glucan breakdown was more pronounced in wheat bread than in gluten-free bread. The results show that the use of β-glucan to increase the nutritional value of wheat bread is limited due to negative influences on technological properties. However, this soluble fibre is highly suitable for incorporation into gluten-free bread.  相似文献   

3.
This study investigates the exploitation of buckwheat sourdough for the production of wheat bread. The fermentation induced extensive hydrolysis of buckwheat main storage proteins, but did not influence the total protein, starch and polyphenols content of buckwheat. Buckwheat sourdough was incorporated at 10 and 20?% (w/w) in wheat dough, and control doughs were produced with the addition of a chemically acidified (CA) buckwheat batter. The addition of buckwheat sourdough greatly affected the rheological properties of the dough, by inducing a strengthening of the gluten network and decrease in elasticity. The acidification of wheat dough also stimulated the baker’s yeast activity during proofing, resulting in higher release of CO2 in shorter times (volume of CO2 released (ml), control dough, 1,671.5; dough with 10?% sourdough, 2,600; dough with 10?% chemically acidified dough, 2,715.5). The properties of wheat bread were enhanced by the addition of 10?% buckwheat sourdough, which led to higher specific volume (control, 3.41?ml/g; bread with 10?% sourdough, 4.03?ml/g) and softer crumb (crumb hardness, control, 5.28?N; bread with 10?% sourdough, 3.93?N). On the other hand, the higher acidification level did not influence the bread volume, but slightly hardened the crumb (crumb hardness, bread with 20?% sourdough, 7.41?N; bread with 20?% chemically acidified dough, 6.48?N). The fermentation positively influenced the nutritional properties of buckwheat flour and wheat bread, in terms of polyphenols (control bread, 8.84?mg GAE/100?g; bread with 10 and 20?% sourdough, 17.83 and 18.20?mg GAE/100?g, respectively) and phytic acid contents. Incorporation of buckwheat sourdough also led to an extension in the shelf life of wheat bread, which became more evident for the higher addition level. Overall, the results of this study suggest that buckwheat sourdough represents a suitable tool for enhancing the overall quality and nutritional properties of wheat bread.  相似文献   

4.
The majority of gluten-free breads on the market are of poor sensory and textural quality. Exopolysaccharides (EPS) formed from sucrose during sourdough fermentation can improve the technological properties of gluten-free breads and potentially replace hydrocolloids. In this study, the influence of in situ formed EPS on dough rheology and quality of gluten-free sorghum bread was investigated. Dextran forming Weissella cibaria MG1 was compared to reuteran producing Lactobacillus reuteri VIP and fructan forming L. reuteri Y2. EPS containing bread batters were prepared by adding 10% and 20% of sourdough. As control served batters and bread containing sourdoughs fermented without sucrose and batters and bread without sourdough addition. The amount of EPS formed in situ ranged from 0.6 to 8.0 g/kg sourdough. EPS formed during sourdough fermentation were responsible for the significant decrease in dough strength and elasticity, with in situ formed dextran exhibiting the strongest impact. Increased release of glucose and fructose from sucrose during fermentation enhanced CO? production of yeast. Organic acids in control sourdough breads induced hardening of the bread crumb. EPS formed during sourdough fermentation masked the effect of the organic acids and led to a softer crumb in the fresh and stored sorghum bread. Among EPS, dextran showed the best shelf life improvements. In addition to EPS, all three strains produced oligosaccharides during sorghum sourdough fermentation contributing to the nutritional benefits of gluten-free sorghum bread. Results of this study demonstrated that EPS formed during sourdough fermentation can be successfully applied in gluten-free sorghum flours to improve their bread-making potentials.  相似文献   

5.
The influence of reducing and oxidizing buckwheat sourdoughs on the rheological, protein, and bread properties of buckwheat and brown rice flour was investigated. Batters and breads prepared with chemically acidified doughs, fresh pre-doughs, and fresh pre-doughs containing glutathione (3 mM) were used as controls. No significant differences were observed after the addition of reducing and oxidizing sourdoughs in all trials. Proteolysis was observed after proofing time in buckwheat and brown rice batters, respectively. Acidified doughs increased the elasticity and the gelatinization temperature of buckwheat batters. No notable microstructure changes were detected in brown rice batters. The extension of fermentation time in sourdough caused a slight decrease in bread volumes in all trials. Sourdoughs increased the bread volume and decreased the crumb hardness of buckwheat breads. In trials with brown rice flour, the addition of sourdough did not show relevant volume differences as compared to the controls, except big voids in sourdough bread crumb. Linear correlations between hardness, volume, and cells’ density were observed. However, no clear correlations among rheological parameters and bread characteristics could be detected. These results indicated that the applied strains were responsible for the leavening capacity of the yeast during the proofing time and for crumb structure in trials with buckwheat and brown rice flour. Applied sourdoughs were able to change the molecular, and bread properties of buckwheat and brown rice bread.  相似文献   

6.
The buckwheat flour was studied as a potential healthy ingredient for improving the nutritional and technological quality of gluten-free bread. The effect of exchange of gluten-free formulation mass by buckwheat flour in 10, 20, 30 and 40 % was investigated. The increase in loaf specific volume with rising buckwheat flour addition was observed. Compared with the control sample, decrease in whiteness and increase in redness and yellowness of crumb were noticed. The rising amount of buckwheat flour in gluten-free bread formulation caused a decrease in crumb hardness during storage. This was in agreement with the decrease in starch gelatinisation enthalpy with the increasing amount of buckwheat flour in gluten-free formula in comparison with the control sample. Buckwheat flour could be incorporated into gluten-free formula and have a positive influence on bread texture and delaying its staling.  相似文献   

7.
The ability of white (W) and yellow (Y) maize flour as basic ingredients to make nutritious and healthy breads meeting functional and sensory standards is investigated. Resistant starch (R) and common wheat flour (WF) were incorporated into formulations as single and associated extra ingredients, and dough machinability, bread nutritional and functional profiles, starch hydrolysis kinetics and keeping behaviour were assessed in blended maize matrices and compared with the maize and wheat flour counterparts. Simultaneous replacement of maize flour samples by R and WF at 40 % significantly modified textural profile, crumb grain features and firming kinetics, and free polyphenol pattern of breads thereof compared to the respective Y or W maize counterparts. Bigger specific volume (+28 % Y-R-WF, +36 % W-R-WF), softer crumb bread (?64 % Y-R-WF, W-R-WF), more aerated structure and homogeneous crumb grain, and lower and slower staling kinetics are observed in composite Y and W maize-based breads, respectively. Nutritional information on maize-based blended breads showed most appealing nutritional quality than WF breads, in terms of lower digestible starch (up to ?21 % in Y-R-WF, W-R-WF, WR) and rapidly digestible starch (up to ?37 % in W-R-WF), higher slowly digestible starch (up to three times in WR) and resistant starch contents (from five to six times in Y-R-WF, W-R-WF, W-R, Y-R) of medium-high sensorially rated bread matrices. All single and blended maize-based breads can be labelled as high-fibre breads (6 g dietary fibre (DF)/100 g food). According to health-related benefits and prebiotic dosage of resistant starch a daily intake of 100 g of single Y-R, W-R, W-R-WF and W-R-WF provides enough resistant starch to positively affect postprandial glucose and insulin levels, while 170 g covers the amount necessary to enhance health.  相似文献   

8.
The significance of heat moisture treatment (HMT) of non-wheat teff (T), chestnut (CN), and chickpea (CP) flours on dough viscoelastic and thermal parameters and on the structural and nutritional pattern of breads was investigated in untreated (?) and HMT (+) associated wheat-based (WT) matrices (WT:T:CN:CP, 66.20:7:7, wt. basis). Suitable trends for the enhancement of the physical characteristics of breads in terms of larger specific volume, higher viscoelastic and textural profiles, with lower and slower staling kinetics on aging were achieved by the pairs T-CN+, T-CP+, CN-CP+, and CN + CP+. In addition, a fine and uniformly sized cell structure with similar cell wall thickness was achieved in crumb samples. The pair T-CN+ enhanced extracted bioaccessible polyphenols, and the pair CN + CP+ synergistically promoted the antiradical activity in breads. Blended breads can be labeled as high-fiber breads (≥?6 g DF/100 g food), and a recommended daily consumption of 250 g of bread fulfilled from 44% (men) to 67% (women) of dietary fiber requirements.  相似文献   

9.
In the present study, the baking properties of the pseudocereals amaranth, quinoa and buckwheat as potential healthy and high-quality ingredients in gluten-free breads were investigated. Scanning electron micrographs were taken of each of the flours. The pasting properties of these flours were assessed using a rapid visco analyser. Standard baking tests and texture profile analysis were performed on the gluten-free control and pseudocereal-containing gluten-free breads. Confocal laser scanning microscopy (CLSM) images were also obtained from the baked breads and digital image analysis was conducted on the bread slices. Bread volumes were found to significantly increase for the buckwheat and quinoa breads in comparison with the control. In addition, the pseudocereal-containing breads were characterised by a significantly softer crumb texture effect that was attributed to the presence of natural emulsifiers in the pseudocereal flours and confirmed by the confocal images. No significant differences were obtained in the acceptability of the pseudocereal-containing gluten-free breads in comparison with the control.  相似文献   

10.
Wheat is primarily used for bread-making. However, fungal diseases, grain moisture at harvest and low-protein contents strongly influence the quality of the wheat flour, thus creating challenges for traders, millers and commercial bakers who struggle to produce consistently high-quality products. This paper address the replacement of low-protein/wholemeal flour functionality for bread-making purposes. Three hydrocolloids, xanthan gum, dextran and hydroxypropyl methylcellulose, were incorporated into bread recipes based on high-protein flours, low-protein flours and coarse wholemeal flour. Hydrocolloid levels of 0–5 % (flour basis) were used in bread recipes to test the water absorption. The quality parameters of dough (farinograph, extensograph, rheofermentometre) and bread (specific volume, crumb structure and staling profile) were determined. Results showed that xanthan had negative impact on the dough and bread quality characteristics. HPMC and dextran generally improved dough and bread quality and showed dosage dependence. Volume of low-protein flour breads were significantly improved by incorporation of 0.5 % of the latter two hydrocolloids. However, dextran outperformed HPMC regarding initial bread hardness and staling shelf life regardless the flour applied in the formulation.  相似文献   

11.
Besides an appealing texture and taste, gluten-free products should feature a well-balanced nutrient profile, since celiac disease or chronic inflammations are likely to induce malnutrition for involved patients. Due to their composition, pseudocereals represent a promising ingredient to improve nutrient profile of gluten-free bread. The objective of this study was to investigate the impact of quinoa bran on gluten-free bread quality, focusing on volume, pore size and sensory acceptance. The impact of quinoa bran was studied in a gluten-free bread formulation. Five different quinoa bran and two whole grain flour concentrations were evaluated and compared to a control formulation based on rice and corn flour. The rheological properties of quinoa bran as well as the effect on dough development up to a replacement level of 80 % were investigated. Baking tests were carried out, and loaf volume, crumb firmness and sensory characteristics were determined. Quinoa fractions significantly increased carbon dioxide formation (p < 0.05) due to a higher substrate availability. Gas retention was reduced by increasing bran levels (p < 0.05). Oscillation measurements indicated a firming impact of quinoa bran which might have caused a more permeable dough structure, promoting the release of carbon dioxide. With regard to the specific loaf volume significant differences were found across the quinoa milling fractions and the applied levels (p < 0.05). Overall this study demonstrated that 10 % bran improved the bread volume by 7.4 % and enhanced the appearance without compromising the taste.  相似文献   

12.
In this study, the application of glucose oxidase and protease commercial preparations was investigated in order to evaluate their impact on the breadmaking performance of four different gluten-free flours (buckwheat, corn, sorghum and teff). Bread formulas were developed without addition of hydrocolloids in order to avoid synergistic effects. Glucose oxidase improved corn (CR) and sorghum (SG) bread quality by increasing specific volume (P < 0.05) and reducing collapsing at the top. The improvements could be related to protein polymerization which resulted in enhanced continuity of the protein phase and elastic-like behavior of CR and SG batters. No significant effects were detected on buckwheat (BW) and teff breads. On the other hand, protease treatment had detrimental effects on the textural quality of BW and SG breads. The effects were related to protein degradation resulting in increased liquid-like behaviour of BW and SG batters. Overall, the results of this study suggest that protein polymerisation can improve the breadmaking performance of gluten-free flours by enhancing elastic-like behaviour of batters. However, the protein source is a key element determining the impact of the enzymes. In the absence of hydrocolloids, protein structures are important to ensure the textural quality of these types of breads.  相似文献   

13.
The study was carried out to investigate the effect of hyperthermophilic xylanase B (XynB) from Thermotoga maritima on the properties of wheat bread and its staling during storage. The presence of XynB in the dough led to improvements in the breadmaking quality (i.e. specific volume and crumb structure) and provided an anti-staling effect on breads compared to the control. Addition of XynB could cause ≈60% increase in specific volume in comparison with the control. By fitting the crumb firming kinetics during storage to the Avrami equation, it showed that XynB retarded the bread staling by reducing the initial crumb firmness and the firming process during storage. XynB hydrolyzed the isolated WU-AX faster than WE-AX under the ratio of wheat AX in wheat flour. Improvement of bread quality by XynB can partly be ascribed to the enzyme specificity.  相似文献   

14.
The aim of the study was to investigate the effect of adding (in two different doses 15% and 30%) pseudocereal (buckwheat, amaranth and quinoa) flour on the antioxidant properties and sensory value of breads. Buckwheat flour had the highest phenolic content (7.25 ± 0.23 mg/g dw). The content of total flavonoids in flours was about 2–4 fold higher when compared to breads. The addition of buckwheat flour to wheat bread, particularly in higher dose, was more effective in enhancing antioxidant activity, as evaluated by means of FRAP and DPPH, which increased by 2.36 fold, and 3.64 fold respectively, in comparison with other pseudocereal flours (amaranth, quinoa), which caused, in higher doses, the changes of above parameters within the ranges 1.20–1.79 fold, and 0.60–1.71 fold. Analysis of sensory results of breads showed that addition of buckwheat flour to the dough might improve subjective properties of bread and increase acceptable quality attributes such as taste, colour or odour. All these observations suggest that addition of buckwheat flour into bread can improve antioxidant as well as sensory properties of bread. Bread fortified with pseudocereal flours, and especially with buckwheat flour, may be placed on the market as a functional food.  相似文献   

15.
应用分离自我国传统酸面团的区域特色乳酸菌--旧金山乳杆菌分别发酵小麦粉和小麦麸皮基质制成(小麦/麦麸)酸面团,研究了两种不同发酵基质的酸面团及其添加量对酵母面团体系面包烘焙及老化特性的影响。结果表明:与小麦粉制作的空白组面包相比,小麦酸面团可以明显改善面包的比容和感官品质;添加未发酵麦麸制作的非酸面团麦麸面包品质低于空白组,但引入麦麸酸面团(10%、20%、30%)后面包比容和感官评定得分均高于相对应的非酸面团麦麸面包。小麦酸面团和麦麸酸面团以及小麦麸皮均可以改善面包的老化特性,在相同贮藏期内,酸面团面包和麦麸面包的硬度增加量、水分迁移量和老化焓值都低于空白组,并且添加麦麸酸面团的面包其硬度和老化焓值都低于相对应的非酸面团麦麸面包。  相似文献   

16.
Bakery products, especially breads, are important part of everyday diet. Home-made breads are all the more crucial on the gluten-free diet, as commercially available breads without gluten are often unattractive. The study presents the recipe, nutritional characteristics (fat, protein, calcium, magnesium, sodium, potassium, copper, iron, zinc, manganese), costs and consumer acceptance of four easy to make home-made gluten-free breads. Partial substitution of bread-mix based on corn and rice (control bread) with teff flour, amaranth flour or quinoa flour significantly changed the content of the most of analysed nutrients, while their price was comparable. The highest nutritional benefits were found for protein, magnesium, potassium, calcium, zinc, iron and manganese in bread with teff and for magnesium, potassium, zinc and manganese in bread with amaranth. The highest consumer acceptance of people on gluten-free diet was noticed for breads with quinoa and teff.  相似文献   

17.
对荞麦无麸质面包配方、工艺及品质改良研究进展进行综述。荞麦粉作为优质无麸质原料,常与其他谷物粉或淀粉复配制作面包,添加量主要为10%~50%,多采用温水和面,发酵时间短;添加纤维或多糖可通过模拟面筋蛋白黏弹性和控制水分子移动来增加面团黏度、提高荞麦面团发酵性能和持气性,降低面包硬度,增加面包体积;酸面团发酵技术可降低荞麦面团和面包的pH,增加面包体积,延缓面包老化;酶处理技术可帮助形成蛋白质网络,增加荞麦面包咀嚼性;添加蛋白质可强化荞麦面团网络结构,增加面包体积;营养学评价显示添加荞麦粉可提高无麸质面包抗氧化能力和矿物质含量。但荞麦无麸质面包依然存在面团持气性差、操作性不佳,面包体积小、硬化快等问题。未来研究应关注原料预处理、多种酶或胶体协作、老化改善及产品免疫学验证。  相似文献   

18.
Many different raw materials have been proposed for producing nutritious gluten-free breads, but rarely, there is a parallel analysis of the effect of physical treatment on those ingredients. The aim of this study was to incorporate carob flour fractions of varying particle size on rice gluten-free breads prepared with carob/rice (15:85) flour blends. Carob flour particle size was controlled by fractionation or jet milling application. Quality features of gluten-free breads containing carob flour and commercially available gluten-free breads were compared. Carob flour addition led to breads with improved colour parameters, crumb structure, retarded firming and lower moisture loss compared to rice bread. Further improvement in specific volume, crumb hardness, protein and ash content and estimated glycaemic index (eGI) could be obtained by a careful selection of the particle size distribution of the carob flour. Carob breads prepared either with the coarsest or the finest fraction prepared using jet milling led to end products with the highest specific volume (≈2.2 g/cm3) and the lowest crumb hardness (≈5.5 N), although they had lower specific volume and harder crumbs than breads from commercial blends (≈3–4 g/cm3, 0.6–3.8 N). Nevertheless, rice-based bread made with the finest carob flour was superior considering its slower firming, protein content and lower eGI. The incorporation of carob flour obtained by jet milling in rice-based gluten-free breads led to end products with quality characteristics and sensory acceptance resembling commercial breads and high nutritional value.  相似文献   

19.
Native and lyophilized kefir grains were added directly to bread dough or as a starter in sourdough. Because of inadequate leavening activity of kefir, yeast‐leavened breads were prepared. Kefir addition influenced the quality attributes and the shelf life of wheat bread. The pH of bread containing kefir decreased as compared to that in the control bread. The acidity of bread with kefir increased as compared to that in the control bread. An addition of kefir grains, regardless of the form, lowered the bread volume and increased the mold‐free shelf life from 4 (control) to 5–7 days. The addition of kefir grains in bread dough contributed to a milder taste, a more delicate yogurt‐like or dairy aroma. The breads made with sourdoughs containing native or lyophilized kefir grains scored higher for crumb quality number than breads made by directly adding kefir grains.  相似文献   

20.
This investigation is aimed at developing a new cereal-based product, with increased nutritional quality, by using Bifidobacterium pseudocatenulatum ATCC 27919 as starter in whole wheat sourdough fermentation and evaluating its performance. Four different sourdough levels (5%, 10%, 15%, and 20% on flour basis) in bread dough formulation were analysed. The effects of the use of bifidobacteria in sourdough bread were comparatively evaluated with controls (yeast and/or chemically acidified sourdough with antibiotics). The sourdough and dough fermentative parameters analysed were pH, total titratable acidity, d/l-lactic and acetic acids. Bread performance was evaluated by specific volume, slice shape, crumb structure and firmness, crust and crumb colour, pH, total titratable acidity, and d/l-lactic and acetic acids, phytate, and lower myo-inositol phosphate contents. The sourdough breads showed similar technological quality to the control sample, with the exception of specific bread volume (decreased from 2.46 to 2.22 mL/g) and crumb firmness (increased from 2.61 to 3.18 N). Sourdough inoculated with bifidobacteria significantly increased the levels of organic acids in fermented dough and bread. The Bifidobacterium strain contributed to the fermentation process, increasing phytate hydrolysis during fermentation owing to the activation of endogenous cereal phytase and its own phytase, resulting in bread with significantly lower phytate levels (from 7.62 to 1.45 μmol/g of bread in dry matter). The inclusion of sourdough inoculated with bifidobacteria made possible the formulation of whole wheat bread with positive changes in starch thermal properties and a delay and decrease in amylopectin retrogradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号