首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermo-alkaline pectinase enzyme from Hylocereus polyrhizus was purified 232.3-fold with a 73.3 % recovery through ammonium sulphate precipitation, gel filtration, and ion exchange chromatography. Ion exchange chromatography combined with sodium dodecyl sulphate gel electrophoresis (SDS-PAGE) revealed that the enzyme was monomeric with a molecular weight of 34.2 kDa. The pectinase exhibited broad specificity towards polygalacturonic acid, arabinan, oat spelt xylan, and pNP-α-glucopyranoside. The optimum pH and temperature were 8.0 and 75 °C, respectively. This enzyme was stable over a wide pH range (3.0–11.0) and at relatively high temperature (85 °C for 1 h). The Km and Vmax values of pectinase towards polygalacturonic acid were 2.7 mg/ml and 34.30 U/mg proteins, respectively. In addition, the enzyme activity was inhibited by Ni2+, Al3+, and Fe2+ and was increased in the presence of Ca2+ and Mg2+ by 120 and 112 %, respectively. The purified pectinase demonstrated robust stability in response to surfactants and oxidising agents. EDTA, which is a powerful chelating agent, did not exert any significant effect on the enzyme stability. Thus, enzymes with these unique properties may be widely used in different types of industries and biotechnological applications.  相似文献   

2.
The aim of this study was to purify a malolactic enzyme (MLE) from Oenococcus oeni (O. oeni) strain and determine its properties in detail. O. oeni SD-2a was cultivated in the ATB broth supplemented with 7 g/L l-malic acid for harvesting the cells. After harvest, the cells were washed and disrupted for purification of MLE. MLE was purified from the supernatant of the disrupted cells through protamine sulfate precipitation, anion exchange chromatography and gel filtration chromatography. The purified MLE was identified using mass spectrometry. The MLE was purified by 43-fold with a yield of 0.42 % and possessed a specific activity of 419.2 U/mg. The purified enzyme with a nominal molecular mass of 59 kDa and a theoretical pI of 4.76 exhibited a maximum enzyme activity at 35 °C and pH 6.0, which retained over 50 % of its initial activity in the presence of 14 % (v/v) ethanol. Mn2+ was proven to be the most effective divalent cation to promote enzyme activity. Under the conditions of temperature 30 °C and pH 6.0, the K m and V max of MLE on l-malic acid were 12.5 × 10?3 M and 43.86 μmol/(min × mg), respectively. Moreover, the purified enzyme exhibited a higher stability with 0.1 M NaCl in addition and had a half-life of 30 days at 4 °C.  相似文献   

3.
A protease from sorghum malt variety KSV8–11 was purified by a combination of dialysis against 4 M sucrose, ion‐exchange chromatography on Q‐Sepharose (Fast flow), gel filtration chromatography on Sephadex G‐100 and hydrophobic interaction chromatography on Phenyl Sepharose CL‐4B. The enzyme was purified 5‐fold to give a 14.1% yield relative to the total activity in the crude extract and a final specific activity of 1348.9 U mg?1 protein. SDS‐PAGE revealed a single migrating protein band corresponding to a relative molecular mass of 16 KDa. Using casein as substrate, the purified protease had optimal activity at 50°C and maximal temperature stability between 30°C and 40°C but retained over 64% of its original activity after incubation at 60°C for 30 min. The pH optimum was 5.0 with maximum stability at pH 6.0 but 60% of the activity remained after 24 h between pH 5.0 and 8.0. The protease was inhibited by Ag+, Ca2+, Co2+, Fe2+, Mg2+, iodoacetic acid (IAA) and p‐chloromercuribenzoate (p‐CMB), stimulated by Cu2+, Sr2+, phenylmethylsulfonyl‐fluoride (PMSF) and 2‐mercaptoethanol (2‐ME) while Mn2+ and ethylenediaminetetraacetic acid (EDTA) had no effect. The purified enzyme had a Km of 18 mg·mL?1 and a Vmax of 11.1 μmol · mL?1 · min?1 with casein as substrate.  相似文献   

4.
A new microbial transglutaminase (MTGase or MTG, EC 2.3.2.13) from a Streptomyces sp. strain isolated from Brazilian soil samples was characterized in crude and purified forms. The aim of this work is to provide relevant information about a new transglutaminase and to compare its characteristics with the well-known commercial transglutaminase from Ajinomoto Co. Inc. (Activa® TG-BP). The enzyme from Streptomyces sp., in both crude and pure forms, exhibited optimal activity in the 6.0–6.5 pH range and at 35–40°C. The results for the commercial enzyme were the same. A second maximum of activity was observed at pH 10.0 with both the crude Streptomyces sp. enzyme and the commercial enzyme. This interesting fact has not been reported in the literature previously. The fact that this second maximum of activity does not appear on the purified form of the enzyme may suggest the presence of an isoenzyme on the crude extract. All of the enzymes tested were stable over the pH range from 4.5 to 8.0 and up to 45°C. The decline in activity of the commercial transglutaminase above 45°C and pH 8.0 was more gradual. The activities of all the MTG samples were independent of Ca+2 concentration, but they were elevated in the presence of K+, Ba2+, and Co2+ and inhibited by Cu2+ and Hg2+, which suggests the presence of a thiol group in the MTG’s active site. The purified enzyme presented a K m of 6.37 mM and a V max of 1.7 U/mL, while the crude enzyme demonstrated a K m of 6.52 mM and a V max of 1.35 U/mL.  相似文献   

5.
The production of a novel acid protease was enhanced by 44 % through statistical optimization. The cultural parameters, such as inoculum size, temperature, moisture content, and incubation time, were 8.59 × 105 g?1 dry koji, 31 °C, 57 %, and 86 h, respectively. This novel acid protease was purified by 17 folds with a recovery yield of 33.56 % and a specific activity of 4,105.49 U mg?1. Far-UV circular dichroic spectra revealed that this purified protease contained 7.1 % α-helix, 64.1 % β-sheet, and 32 % aperiodic coil. This novel acid protease was active over the temperature range of 35–55 °C with optimum temperature of 40 °C and was stable in the pH range of 2.5–6.5 with optimum pH of 3.5. Mn2+ enhanced its activity while Co2+ showed inhibitory effect. With casein as substrate, the kinetic parameters of K m, V max, energy of activation (E a), and attenuation index of inactivation velocity by heat inducing (λ) were 0.96 mg mL?1, 135.14 μmol min?1 mg?1, 64.11 kJ mol?1, and 0.59, respectively.  相似文献   

6.
Soybean hull peroxidase (EC 1.11.1.7), an acidic peroxidase isolated from soybean (Glycine max var HH2) hulls was purified to electrophoretic homogeneity by a combination of ammonium sulphate fractionation, DEAE‐Sephadex A‐50 chromatography, concanavalin A‐Sepharose 4B affinity chromatography and Bio‐Gel P‐60 gel filtration. The specific activity of purified peroxidase was about 57‐fold higher than that of crude extract. The yield was about 16.4%. The molecular weight of the enzyme was estimated to be 38 000 by SDS‐polyacrylamide gel electrophoresis. The peroxidase was a glycoprotein containing about 18.7% carbohydrate, approximately one‐quarter of which was shown to be glucosamine residues. It was found to have an isoelectric point of 3.9. The enzyme was most active at pH 4.6 and 45°C, and was stable in the pH range 2.5–11.5. The enzyme could tolerate heating for 10 min at 75°C without being inactivated, and at 85°C, it took 40 min to inactivate the enzyme 50%, confirming that the peroxidase was a novel thermostable enzyme. Fe 2+, Fe3+, Sn2+, CN and N3 inhibited enzyme activity, while Hg2+, Ag+, Pb 2+, Cr3+, EDTA and SDS were not significantly inhibitory. © 1999 Society of Chemical Industry  相似文献   

7.
Diospyros lotus fruit polyphenol oxidase was purified using affinity chromatography, resulting in a 15-fold enrichment in specific activity. The purified enzyme, having 16.5 kDa molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, exhibited the highest activity toward 4-methylcatechol. Maximum diphenolase activity was reached at pH 7.0 and 60°C in the presence of 4-methylcatechol. Km and Vmax values were calculated as 3.8 mM and 1250 U/mg protein, respectively. Ascorbic acid was a promising inhibitor with an IC50 value of 0.121 µM. The activity of the purified enzyme was stimulated by Fe2+, Sr2+, Zn2+, and K+ and deeply inhibited by Hg2+, at 1 mM final concentration. Aqueous extract of Diospyros lotus L. fruit showed strong substantial urease and acetylcholinesterase inhibition, with IC50 values of 1.55 ± 0.05 and 16.75 ± 0.11 mg/mL, respectively.  相似文献   

8.
An alkali-thermostable β-mannanase from Bacillus nealsonii PN-11 was purified 38.96-fold to homogeneity with specific activity of 2,288.90 ± 27.80 U mg?1 protein and final recovery of 8.92 ± 0.09 %. The purified β-mannanase was an extracellular monomeric protein with a molecular mass of 50 kDa on SDS–PAGE. The first 20 N-terminal amino acid sequence of mannanase enzyme was MVVKKLSSFILILLLVTSAL. The optimal temperature and pH for enzyme were 65 °C and 8.8, respectively. It was completely stable at 60 °C for 3 h and retained >50 ± 1.0 % activity at 70 °C up to 3 h. The β-mannanase was highly stable between pH 5–10 and retained >85 % of the initial activity for 3 h. The metal ions Ni+2, Co+2, Zn+2 and Mg+2 enhanced the enzyme activity. The enzyme remained stable after 3 h of preincubation with most of the tested organic solvents. According to substrate specificity study, the purified mannanase had high specificity to locust bean gum which was degraded mainly to mannooligosaccharides (MOS) like mannotriose, mannotetraose and mannopentose. These MOS enhanced the growth of Lactobacillus casei but inhibited the growth of Salmonella enterica indicating potential prebiotic properties. The properties of the purified β-mannanase from B. nealsonii PN-11 make this enzyme attractive for biotechnological applications.  相似文献   

9.
α-Galactosidase purified from Lactobacillus helveticus ATCC 10797 by fast performance liquid chromatography system using ion exchange and gel-filtration columns showed the K m of 3.83 mM and V max of 416.44 µmol/min/mg protein calculated from the substrate p-nitrophenyl-α-d-galactopyranoside. The molecular mass was 188 kDa by gel-filtration, but 90 kDa by SDS-PAGE, indicating a homodimer. The optimum temperature was 37 °C, and the optimum pH was at 6 with an acceptable stability between pH 4 and 8. This enzyme was activated by 10 mM monovalent ions such as K+, NH4 +, Li+, and CS+, while the activity was inhibited by divalent ions such as Cu2+, Zn2+, and Fe2+. Melibiose was hydrolyzed to glucose and galactose, raffinose to galactose and sucrose, while stachyose to galactose and sucrose. A novel source of α-galactosidase from L. helveticus possessing both hydrolytic activity to eliminate flatulence sugars and transgalactosylation activities to synthesize galacto-oligosaccharides is identified and characterized.  相似文献   

10.
β‐Mannanase was purified 2619.05‐fold from the Lactobacillus plantarum (M24) bacterium by ammonium sulphate precipitation and ion exchange chromatography (DEAE‐Sephadex). The purified enzyme gave two protein bands at a level of approximately 36.4 and 55.3 kDa in the SDS‐PAGE. The purified mannanase enzyme has shown its maximum activity at 50 °C and pH 8, and it has been also determined that the enzyme was stable at 5–11 pH range and over 50 °C. The Vmax and Km values have been identified as 82 mg mannan mL?1 and 0.178 mm , respectively. The effects of some metal ions such as Fe2+, Ca2+, Co2+, Ni2+, Mn2+, Cu2+ and Zn2+ on the mannanase enzyme have been also investigated, and it has been determined that all metal ions had significant effects on the activation of the mannanase enzyme. In addition, the effectiveness of the purified mannanase enzyme on the clarification of some fruit juices such as orange, apricot, grape and apple has been investigated. During the clarification processes, the enzyme was more effective than crude extracts on the clarification of the peach juice with a ratio of 223.1% at most.  相似文献   

11.
A cysteine proteinase from sorghum malt variety SK5912 was purified by a combination of 4 M sucrose fractionation, ion‐exchange chromatography on Q‐ and S‐Sepharose (fast flow), gel filtration chromatography on Sephadex G‐100 and hydrophobic interaction chromatography on Phenyl Sepharose CL‐4B. The enzyme was purified 8.4‐fold to give a 13.4% yield relative to the total activity in the crude extract and a final specific activity of 2057.1 U mg?1 protein. SDS—PAGE revealed two migrating protein bands corresponding to apparent relative molecular masses of 55 and 62 kDa, respectively. The enzyme was optimally active at pH 6.0 and 50 °C, not influenced across a relatively broad pH range of 5.0–8.0 and retained over 60% activity at 70 °C after 30‐min incubation. It was highly significantly (P < 0.001) inhibited by Hg2+, appreciably (P < 0.01) inhibited by Ag+, Ba2+ and Pb2+ but highly significantly (P < 0.001) activated by Co2+, Mn2+ and Sr2+. The proteinase was equally highly significantly (P < 0.001) inhibited by both iodoacetate and p‐chloromercuribenzoate and hydrolysed casein to give the following kinetic constants: Km = 0.33 mg ml?1; Vmax = 0.08 µmol ml?1 min?1. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
A novel food-grade strain Lactobacillus plantarum 70810 producing β-galactosidase with high transgalactosylation activity was isolated from Chinese paocai. The galactooligosaccharides (GOS) were synthesized by using this enzyme with a maximum yield of 44.3 % (w/w) from 400 g/L lactose at 45 °C for 10 h. The β-galactosidase from this strain was purified to homogeneity by ammonium sulfate precipitation, anion exchange chromatography and gel filtration chromatography. It was a heterodimer arrangement of approximately 105 kDa composed of two subunits of 35 and 72 kDa. The optimal pH of the purified β-galactosidase was 8.0 for both o-nitrophenyl-β-d-galactopyranoside (oNPG) and lactose hydrolysis, and optimal temperature was 60 °C and 55 °C, respectively. Its K m and V max values for oNPG and lactose were 0.89 ± 0.05 mM, 194 ± 3.0 μmoL/min/mg protein, and 9.88 ± 0.16 mM, 15.88 ± 0.21 μmoL/min/mg protein, respectively. This enzyme was slightly inhibited by the hydrolysis products, that is, glucose and galactose. Since the β-galactosidase from L. plantarum 70810 exhibited higher transgalactosylation activity, strong affinity for lactose and low end-product inhibition, it was suggested to be a potential candidate for the synthesis of prebiotic GOS.  相似文献   

13.
Aminopeptidases act on N-terminal of proteins and peptides produce free amino acids making an impact on the final flavor of foods. An arginine aminopeptidase (RAP) which preferred to hydrolyze basic amino acids from N-termini of peptides and proteins was purified to homogeneity from white shrimp (Litopenaeus vannamei) muscle. The molecular mass of RAP was estimated as 100 kDa on SDS-PAGE. Peptide mass fingerprinting analysis obtained 95 amino acid residues which was 100 and 77.9 % identical to puromycin-sensitive aminopeptidases from insect and zebrafish, respectively. Optimum pH and temperature of the RAP were 7.0 and 30 °C. RAP rapidly hydrolyzed fluorogenic substrates l-arginine 4-methylcoumaryl-7-amide (Arg-MCA) and Lys-MCA with K m values of 2.7 and 4.9 μM, respectively. The enzyme can be strongly inhibited by puromycin, bestatin, and 1,10-phenanthroline and partially inhibited by ethylenediaminetetraacetic acid (EDTA) and ethylene glycol-bis (2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA). Moreover, the competitive inhibition of puromycin for RAP was confirmed, and K i value was calculated as 0.07 nM. Metal ions of Zn2+ and Mn2+ significantly reactivated the inactive apoenzyme activity dialyzed by EDTA. All these results indicated that the purified enzyme is a metalloaminopeptidase which would possibly contribute to flavor development in shrimp muscle.  相似文献   

14.
Cyclodextrin glycosyltransferase (E.C. 2.4.1.19) of alkalophilic Bacillus sp. 7-12 was purified by ammonium sulfate precipitation, DEAE–cellulose column chromatography and Sepharose CL-6B column chromatography. The enzyme thus obtained consisted of a single band that did not dissociate into subunits by SDS–polyacrylamide gel electrophoresis (PAGE). The molecular weight of the purified enzyme was determined to be 69,000 Da by SDS–PAGE. The enzyme was stable below 70 °C with an optimum activity at 60 °C, and was stable at a pH range of 6–10 with an optimum pH at 8.5. The enzyme activity was strongly inhibited by MgCl2, ZnCl2, CuSO4, Al2(SO4)3, CoCl2, AgNO3, FeSO4 and slightly inhibited by SnCl2 and MnCl2. CaCl2, KCl, EDTA and DTT had no influence on the enzyme activity. For cyclodextrin production, up to 34% conversion to cyclodextrins was obtained from 10% starch. The enzyme produced α-, β- and γ-cyclodextrins in the ratio of 0.26:1:0.86.  相似文献   

15.
The α-amylase was extracted from pure persimmon honey and purified by DEAE-Toyopearl 650M, CM-Toyopearl 650M, and Toyopearl HW-55F column chromatographies. Molecular weight of purified enzyme was estimated to be about 58 kDa by Toyopearl HW-55F gel chromatography and SDS-PAGE, respectively suggested that the purified enzyme was a monomer. Optimum pH of the enzyme was 6.0?7.0 and optimum temperature 40°C. The enzyme was extremely inactivated at pH was higher than 7.0 or lower than 5.0. Heat inactivation occurred at 40°C. This enzyme activated by Ca 2+ , Mn2+, PCMB, and DTNB, but inhibited by Ba2+, Fe3+, Hg2+, Mg2+, and iodoacetic acid. The purified enzyme was of α?-type by TLC analysis. The relative rate of hydrolysis of the polymeric substance decreased with decreasing percentage of α?-1,4-linkages and with increasing percentage of α?-1,6-linkages in substrate similar to the results from commercially available honey.  相似文献   

16.
β-Amylase produced by Hendersonula toruloidea was purified to homogeneity by salting out with ammonium sulphate, ion-exchange chromatography on DEAE-cellulose and gel-filtration on Sephadex G-75. The relative molecular mass of the enzyme was estimated to be 60,000 by gel filtration. The enzyme was optimally active at pH 6.0 and 60°C, stable between pH 6 and 8 (24 h) and retained 74% activity at 70°C (30 min). It was strongly activated by Na+ but inhibited by Hg2+, Zn2+ and Cu2+. The enzyme hydrolyzed amylopectin (Km 0.42 mg/ml) forming maltose, maltotetraose and unidentified maltooligosaccharide, and hydrolyzed soluble starch (Km 0.3 mg/ml) and glycogen (Km 0.5 mg/ml) forming maltose and unidentified maltooligosaccharide.  相似文献   

17.
Polyphenol oxidase (EC 1.10.3.1) in head lettuce (Lactuca sativa L) was purified by ammonium sulphate fractionation, ion exchange chromatography and gel filtration. The enzyme was found to be homogeneous by polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be about 56 000 amu by Sephadex G-100 gel filtration. The purified enzyme quickly oxidised chlorogenic acid (5-caffeoyl quinic acid) and (—)-epicatechin. The Km values for the enzyme, using chlorogenic acid (pH 4·5, 30°C) and (—)-epicatechin (pH 7·0, 30°C) as substrate, were 0·67 mM and 0·91 mM, respectively. The optimal pH of chlorogenic acid oxidase and (—)-epicatechin oxidase activities were 4·5 and 7·8, respectively, and both activities were stable in the pH range 6–8 at 5°C for 20 h. Potassium cyanide and sodium diethyldithiocarbamate markedly inhibited both activities of the purified enzyme. The inhibitory effect of metallic ions such as Ca2+, Mn2+, Co2+ and Ni2+ for chlorogenic acid oxidase activity was stronger than that for (—)-epicatechin oxidase activity.  相似文献   

18.
From locally grown pumpkins, an active lipoxygenase preparation with an active carotene-bleaching factor was partially purified by ammonium sulfate fractionation, gel filtration, and ion-exchange chromatography. The enzyme had a pH optimum at 6.5 and was inactive at pH below 3 and above 10. The maximum activity occurred at 30°C. The apparent Km determined in the presence of linoleate was 0.33 × 10?3 M. The heavy metals Hg2+, Cu2+, Co2+, and Fe3+ were effective inhibitors of this enzyme. Cyanide, fluoride, and L-ascorbic acid also inhibited lipoxygenase activity. Carotene-bleaching activities operated strongly on the lipoxygenase fraction and slightly on the denatured lipoxygenase and hemoproteins treated with heat.  相似文献   

19.
An alkaline serine protease (SF1) from Kocuria kristinae F7 was purified. The molecular mass of the SF1 protease was estimated to be 57 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE). The N-terminal amino acid sequence of the first 14 amino acids of the SF1 protease showed low homology with bacterial proteases, suggesting that the enzyme had not been described previously. The SF1 protease exhibited maximal activity at pH 9.0 and 60 °C. The activity of the SF1 protease was enhanced by the presence of Ca2+ and Mg2+ ions. It showed high stability in the presence of NaCl and ethanol. Reverse-phase high-performance liquid chromatography (RP-HPLC) analyses indicated that soybean protein isolates treated with the SF1 protease generated four principal new hydrophilic peptides. Mass spectrometry analyses indicate that the distribution of molecular weight of these peptides was from 0.705 to 1.305 kDa. Hydrolysis of soybean protein isolates with the SF1 protease increased the level of total free amino acids, essential amino acids and flavor amino acids. The SF1 protease may decrease the bitterness of soy protein hydrolysates. The results showed that the SF1 protease of Kocuria kristinae F7 appears to be good candidate enzyme for potential application in acceleration of fermented soybean food ripening.  相似文献   

20.
Serine protease from the head of Pacific white shrimp was purified by the following techniques: ammonium sulfate fractionation, Q-Sepharose HP ion exchange chromatography, and Sephadex G-100 gel filtration. The molecular weight was estimated as 32.8 kDa using SDSPAGE. The optimum pH and temperature of the enzyme for the hydrolysis of casein were determined to be 10.0 and 40°C. It was stable at pH range from 8.0 to 11.0 and had good thermal stability. Pb2+, Ca2+, Mg2+, Cu2+, and Mn2+ could active the enzyme certainly when Zn2+ and Hg2+ strongly inhibited the activity. The enzyme was inhibited by the general serine protease inhibitor (PMSF) and the specific trypsin inhibitors (TLCK, SBTI). The modification of various amino acid modifiers for the purified enzyme determined that the enzyme active center included tryptophan, histidine, and serine, moreover, arginine had a certain relationship with the enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号