首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中子引起出射带电粒子反应的双微分截面在核工程、核反应理论研究和中子治癌等应用领域皆具有重要意义。我们用一个低气压多丝正比室△E—E望远镜系统测量了14.8MeV中子引起^9Be(n,xα)反应出射仪的双微分截面,中子源是在中国原子能科学研究院的高压倍加器上用T(d,n)^4He反应产生的,入射氘能量为250keV,靶为1mg/cm^2的氚钛靶。  相似文献   

2.
本文给出一种氚钛厚靶氘氚反应加速器中子源的中子产额、能谱和角分布的计算方法,并开发了相应的计算模拟程序。用自行开发的计算程序计算了入射氘束流能量低于1.0MeV时加速器中子源的中子产额、能谱和角分布,给出了氚钛厚靶的一些典型计算结果,并对结果的可靠性进行分析。  相似文献   

3.
采用将厚靶分割成薄靶的方法对厚氚钛靶、260keV氘束流能量条件下T(d,n)4He反应中子源的能谱和角分布进行计算。以分割法计算得到的能谱和角分布数据为基础,建立了D-T中子源Monte-Carlo模拟抽样模型,在考虑中子发生器各元件材料及实验大厅墙壁对快中子的慢化、散射和吸收的条件下,采用MCNP程序对兰州大学3×1012s-1强流中子发生器260keV氘束流能量下的中子能谱和角分布进行了模拟,给出了模拟结果。为检验模拟结果的可靠性,与实验测量能谱进行了比较,Monte-Carlo模拟谱和实验测量谱基本符合。  相似文献   

4.
厚靶T(d,n)4He反应加速器中子源的中子产额、能谱和角分布   总被引:4,自引:2,他引:2  
本文给出一种氚钛厚靶氘氚反应加速器中子源的中子产额、能谱和角分布的计算方法,并开发了相应的计算模拟程序.用自行开发的计算程序计算了入射氘束流能量低于1.0 MeV时加速器中子源的中子产额、能谱和角分布,给出了氚钛厚靶的一些典型计算结果,并对结果的可靠性进行分析.  相似文献   

5.
用厚靶氘氚(D-T)反应中子产额的计算方法模拟计算了入射氘离子能量为120 keV时D-T中子源的中子产额。研究了氘离子源产生的束流中单原子氘离子(D+)及双原子氘离子(D2+)比例对中子产额的影响。结果表明,提高D+比例,同时降低D2+比例将有效提高中子产额。另外还研究了不同靶膜材料及组分引起的中子产额变化。表明中子产额与靶膜中氚的含量成正比,与靶膜元素的原子质量成反比。同时分析讨论了离子源品质及靶参数对中子源整体性能的影响,得出离子源束流品质的提高对中子源整体的设计至关重要。最后,模拟计算了靶膜表面有氧化层情况下中子产额的变化,并与实验结果作了对比。在此基础上提出了一种新的靶设计方案,并对其物理可行性进行了研究。  相似文献   

6.
低能强流离子束装置能够提供能量10-100keV、靶上流强达10mA以上的氘束,用于低能的氘氘反应及氘氚反应的实验研究。  相似文献   

7.
基于氚(氘)钛固体靶,利用TARGET程序结合实际的氚(氘)靶和靶室建模,对D-T中子和D-D中子的能量和微分截面角分布、氘离子能量损失率和平均能量、中子平均能量和能散、反应率在氚(氘)钛靶中的深度分布、中子注量率谱和中子产额进行了计算,获得了D-T和D-D中子的相关特性参数。计算结果可为在其他蒙特卡罗模型中精确描述各项异性中子源提供数据,对中子能量单色性和中子产额等指标的选择提供了参考数据。  相似文献   

8.
大面积氘/氚靶是实现高产额强流中子源的关键部件,是氘、氚中子源广泛应用的前提条件。本工作采用磁控溅射镀膜与多弧离子镀结合的方式,制备以铜或钼为基底、直径大于500 mm的大面积钛膜。针对制备的钛膜,采用自研的氘/氚靶生产系统,经过除气、净化、高温吸氘/氚、尾气回收等流程,生产了氘/氚钛原子比大于1.85的氘靶、氚靶,采用Ф22 mm的小靶片,进行氘束流加速器中子产额测试,研制的氘靶中子产额达到8.0×108/s,根据氘靶与氚靶反应截面计算氚靶中子产额,相同条件下,氚靶的中子产额在1.0×1011/s以上。以上测试结果表明,本工作研制的Ф500 mm大面积氘/氚靶,可实现强流中子源的高产额中子输出,达到国际先进水平。  相似文献   

9.
氘氚中子源通过氘离子束轰击氚靶片引发氘氚聚变反应,产生14.1 MeV高能中子。高能中子调控后亦可产生宽能谱中子场,是先进核能及核技术交叉应用研究的重要实验平台。作为中子源的核心部件,氚靶片由靶片基底和储氚薄膜组成,其中储氚薄膜的核素组成会影响氚原子密度与入射氘离子射程,最终直接关系到中子源强的高低。本文基于MATLAB和SRIM软件建立氘氚中子源强计算模型,对比计算了不同新型储氢金属材料组成的储氚薄膜(TiT_2、MgT_2、Mg_2NiT_4、VT_2、LiBT_4和LaNi_5T_6)和不同氘离子能量对中子源强的影响。计算结果表明,在同等束流条件下,MgT_2的中子源强相比TiT_2可提高30%以上,且制备工艺较为成熟,是氘氚中子源的优秀储氚薄膜材料。  相似文献   

10.
这是一台低能强流加速器。调试结果:靶上获得能量300keV,流强30mA的连续氘束流;束斑直径小于2cm。通过(d,T)反应中子产额达到3×10~(12)n/s。该器采用双等离子体离子源,双间隙高梯度加速管,由频率为2.5kHz的可控硅中频逆变器供电的对称型四级倍压稳压电源,直径20cm和转速1100r/min的高速旋转氚钛靶等。  相似文献   

11.
设计了一套二次电子测量装置,采用间接测量法,利用中子发生器产生的氘离子束,对氘离子束轰击下钼靶的二次电子发射系数进行了实验研究,获得了钼的二次电子发射系数随不同入射氘离子能量的变化趋势,氘离子束能量为170 keV时的二次电子发射系数最大,约为2.33.  相似文献   

12.
本文用D-D反应对密封中子发生器用钛膜自生靶膜最佳厚度做了实验研究。在对实验结果分析的基础上,提出选择自生靶膜最佳厚度的一般原则,并得出在130 keV氘离子轰击下钛膜自成靶的最佳厚度为1.25~1.55μm,该靶在82.5μA束流轰击下D-D反应中子产额为6.5×10~6n/s。  相似文献   

13.
超短脉冲激光辐照固体靶可产生能量从keV到100 MeV的硬X射线,X射线能量与入射激光强度I存在定标关系,当激光强度为10~(14)~10~(18)W/cm~2时,定标率为E∝(Iλ~2)~k,其中:λ为入射激光波长;不同实验条件下不同物理模型给出的k的取值范围为1/3~1。在I≈10~(16)W/cm~2条件下,以往实验测量到的X射线能量在几十keV到几百keV之间。本实验在I≈10~(16)W/cm~2条件下,重复照射同一靶点,可增强X射线能量。  相似文献   

14.
一、引言在“加速器单能中子源手册”一书中,我们曾计算过T(d,n)~4He反应的平均氘相互作用能量和平均中子能量,但在那里存在以下不足之处:1.氘在氚、钛中的能量损失率dE/dx用了比较早的实验数据,近几年来,带电粒子在物质中的能量损失率已有许多人作了  相似文献   

15.
质子加速器适用于为硼中子俘获治疗提供中子源,其中子源强及能谱较反应堆中子源更具可调性。中子靶物理计算分析是加速器中子源设计的基础,为其提供粒子能量、流强等参数需求分析,并为靶体结构尺寸设计、中子慢化和屏蔽分析等提供前端参数。本文利用MCNPX蒙特卡罗程序,通过对质子打靶的中子产额和能谱、靶体能量沉积、打靶后靶材放射性活度和中子出射空间角分布等进行研究,提出能量2.5 MeV质子轰击100~200 μm锂靶的设计,并用模拟计算数据论证其合理性。该设计中子源在1 mA流强质子轰击下,源强可达9.74×1011 s-1;拟设计15 mA、2.5 MeV质子束产生的中子源,在治疗过程中靶材放射性活度累积最大值约为1.44×1013 Bq。  相似文献   

16.
质子加速器适用于为硼中子俘获治疗提供中子源,其中子源强及能谱较反应堆中子源更具可调性。中子靶物理计算分析是加速器中子源设计的基础,为其提供粒子能量、流强等参数需求分析,并为靶体结构尺寸设计、中子慢化和屏蔽分析等提供前端参数。本文利用MCNPX蒙特卡罗程序,通过对质子打靶的中子产额和能谱、靶体能量沉积、打靶后靶材放射性活度和中子出射空间角分布等进行研究,提出能量2.5 MeV质子轰击100~200μm锂靶的设计,并用模拟计算数据论证其合理性。该设计中子源在1 mA流强质子轰击下,源强可达9.74×10~(11) s~(-1);拟设计15 mA、2.5 MeV质子束产生的中子源,在治疗过程中靶材放射性活度累积最大值约为1.44×10~(13) Bq。  相似文献   

17.
基片镀膜是氘/氚靶制备过程的重要工序,靶膜的性能直接影响充氘及中子实验。本文对去除表面污渍和氧化层后的基片采用磁控溅射进行镀膜,研制性能优良的强流氘氚中子源用靶膜。采用扫描电镜观察膜层表面外观形貌,根据称重法用电子天秤测量理论膜厚,使用划痕仪分析膜层结合力,并通过电子探针分析膜层的杂质元素含量来表征靶膜的性能。结果表明,磁控溅射镀膜后膜层颗粒度细小、分布均匀,同时膜层表面杂质小于6.0%。镀膜后基片的活化充氘实验表明,氘/钛(原子比)最高可达1.98,满足中子产额实验要求,可进行后续中子实验。  相似文献   

18.
锰浴法是绝对测定中子源源强比较准确的方法之一,因此它被广泛地用来刻度各种类型的中子源强度。当用天然水锰浴测定某些光中子源(例如~(24)Na-D_2O,~(24)Na-Be源)的强度时,除了要做中子源自吸收、中子洩漏等修正外,还必须考虑水中氘成分(氢中含氘0.015%)的影响。这是因为,这些光中子源γ射线的能量已超过D(γ,n)反应阈能(2.225  相似文献   

19.
中子管的中子产额和寿命受靶性能影响,利用SRIM(The Stopping and Range of Ions in Matter)2008模拟计算不同束流和高压条件下钛靶的中子产额,并与3He中子监测仪测量结果进行比较,实验和模拟结果符合较好。模拟计算不同能量氘离子在不同含量的钪钛、钼钛、铌钛三种合金的中子输出和溅射产额。结果表明:入射离子能量为120 keV、合金比例为0.2的钪钛合金中子产额最高,模拟值可达1.24×10~9 s~(-1);合金比例为0.6的钪钛合金,金属原子和氚原子溅射产额较低;与钼钛和铌钛两种合金相比,钪钛合金的中子输出高,而溅射产额低。  相似文献   

20.
根据串列加速器中铯溅射负离子源(SourcesofNegativeIonsbyCesiumSputtering,SNICS)产生负氘离子的要求,制备了一种氘化钛阴极。它由1个圆柱形的铜阴极心和填满其中心孔的氘化钛溅射靶构成,作为溅射靶材料的氘化钛通过高纯度钛粉与氘进行化学反应制得。钛粉在适当的温度下进行真空处理,从而获得良好的化学活性,很容易与氘化合生成氘钛原子比为1.5的氘化钛(TiD1.5)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号