首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article examines how power authorities could facilitate and manage offshore wind power development in US coastal waters. The power authority structure is an American 20th century institution for managing energy resources—a form of a public authority or public corporation dedicated to creating, operating and maintaining electric generation and transmission infrastructure. Offshore wind power is characterized by high capital costs but no fuel costs and thus low operating costs. Therefore a power authority, by virtue of its access to low-cost capital and managerial flexibility, could facilitate offshore wind power development by reducing financial risk of developing and lowering debt payments, thus improving the risk profile and lowering the cost of electricity production. Additionally, power authorities can be made up of multiple states, thus opening the possibility for joint action by neighboring coastal states. Using primary and secondary data, we undertake an in-depth analysis of the potential benefits and shortcomings of a power authority approach.  相似文献   

2.
Offshore wind offers a very large clean power resource, but electricity from the first US offshore wind contracts is costlier than current regional wholesale electricity prices. To better understand the factors that drive these costs, we develop a pro-forma cash flow model to calculate two results: the levelized cost of energy, and the breakeven price required for financial viability. We then determine input values based on our analysis of capital markets and of 35 operating and planned projects in Europe, China, and the United States. The model is run for a range of inputs appropriate to US policies, electricity markets, and capital markets to assess how changes in policy incentives, project inputs, and financial structure affect the breakeven price of offshore wind power. The model and documentation are made publicly available.  相似文献   

3.
In recent years, the wind power sector has begun to move offshore, i.e. to use space and good wind speeds on the open sea for large scale electricity generation. Offshore wind power, however, is not just technologically challenging but also a capital intensive and risky business that requires particular financial and organizational resources not all potential investors might have. We therefore address the question, what impact offshore wind power may have on ownership and organizational structures in the wind power sector. We compare on- and offshore wind park ownership in Denmark, the UK and Germany. The analysis shows that offshore wind power in all three countries is dominated by large firms, many of which are from the electricity sector. In Denmark and the UK, also investors from the gas and oil industry play an important role in the offshore wind business. This development represents a major shift for countries such as Germany and Denmark, in which the wind power sector has grown and matured on the basis of investments by individuals, farmers, cooperatives and independent project developers. The structural changes by which offshore wind power is accompanied have consequences for turbine manufacturers, project developers, investors, associations and policy makers in the field.  相似文献   

4.
This paper aims to provide insights in the cost developments of offshore wind energy in Europe. This is done by analysing 46 operational offshore wind farms commissioned after 2000. An increase of the Capital Expenditures (CAPEX) is found that is linked to the distance to shore and depth of more recent wind farms and commodity prices. Analysis results indicate that these two factors are only responsible for about half of the observed CAPEX increase, suggesting other factors such as turbine market with limited competition also led to an increasing CAPEX. Using CAPEX, Annual Energy Production, Financings costs and Operational Expenditures, the development of average Levelized Cost of Electricity (LCoE) is shown to increase from 120 €/MWh in 2000 towards 190 €/MWh in 2014, which is a direct result of the CAPEX increase. The results indicate very different LCoE values among European countries, from currently about 100 Euro/MWh in Denmark and Sweden to 150-220 Euro/MWh in all other countries investigated suggesting an effect of national policy frameworks on the LCoE of offshore wind energy.  相似文献   

5.
This paper describes a method for assessing the electric production and value of wind resources, specifically for the offshore environment. Three steps constitute our method. First, we map the available area, delimiting bathymetric areas based on turbine tower technology, then assess competing uses of the ocean to establish exclusion zones. From exclusion zones, bathymetry, and turbine tower water depth limitations, the water sheet area available for wind turbines is calculated. The second step is calculation of power production starting from available area, which determines the location and count of turbines. Then existing wind data are extrapolated to turbine height and, along with the turbine power output curve, they are used to establish the expected electric power production on an hourly basis. The third step calculates market value based on the hourly electric market at the nearest electric grid node.To illustrate these methods, we assess the offshore wind resource of the US state of Delaware. We find year-round average output of over 5200 MW, or about four times the average electrical consumption of the state. On local wholesale electricity markets, this would produce just over $2 billion/year in revenue.Because the methods described here do not rely on constructing meteorological towers nor on proprietary software, they are more accessible to a local government, state college, or other organization. For example, these methods can be carried out as an initial assessment of resources, or by a government or public entity as a check on claims by private applicants.  相似文献   

6.
Wind power hydrogen production is the direct conversion of electricity generated by wind power into hydrogen through water electrolysis hydrogen production equipment, which produces hydrogen for convenient long-term storage through water electrolysis. With the development of offshore wind power from offshore projects, construction costs continue to rise. Turning power transmission into hydrogen transmission will help reduce the cost of offshore wind power construction. This paper analyses the methods of producing hydrogen from offshore wind power, including alkaline water electrolysis, proton exchange membrane electrolysis of water, and solid oxide electrolysis of water. In addition, this paper outlines economic and cost analyses of hydrogen production from offshore wind power. In the future, with the development and advancement of water electrolysis hydrogen production technology, hydrogen production from offshore wind power could be more economical and practical.  相似文献   

7.
This paper is about understanding the role and importance of public responses to offshore wind power. It builds on a framework for understanding social acceptance and opposition to onshore turbines, and reviews the emerging research on offshore wind. While less is known about how people will respond to offshore than onshore wind, there is now an emerging body of research. From this literature, several common factors which influence responses have emerged and are discussed here: the (continued) role of visual impact; place attachment to the local area; lack of tangible benefits; relationships with developers and outsiders; and the role of the planning and decision-making systems. The paper argues that, as with onshore developments, the public should be included in decision-making about offshore wind farms, and that they have a key role which should not be underestimated. The paper concludes with some thoughts about the means to involve people and how effected communities might be effectively acknowledged, identified and engaged.  相似文献   

8.
This work presents simulation results from a system where offshore wind power is used to produce hydrogen via electrolysis. Real-world data from a 2.3 MW floating offshore wind turbine and electricity price data from Nord Pool were used as input to a novel electrolyzer model. Data from five 31-day periods were combined with six system designs, and hydrogen production, system efficiency, and production cost were estimated. A comparison of the overall system performance shows that the hydrogen production and cost can vary by up to a factor of three between the cases. This illustrates the uncertainty related to the hydrogen production and profitability of these systems. The highest hydrogen production achieved in a 31-day period was 17 242 kg using a 1.852 MW electrolyzer (i.e., utilization factor of approximately 68%), the lowest hydrogen production cost was 4.53 $/kg H2, and the system efficiency was in the range 56.1–56.9% in all cases.  相似文献   

9.
It has been argued that increasing transmission network capacity is vital to ensuring the full utilisation of renewables in Europe. The significant wind generation capacity proposed for the North Sea combined with high penetrations of other intermittent renewables across Europe has raised interest in different approaches to connecting offshore wind that might also increase interconnectivity between regions in a cost effective way. These analyses to assess a number of putative North Sea networks confirm that greater interconnection capacity between regions increases the utilisation of offshore wind energy, reducing curtailed wind energy by up to 9 TWh in 2030 based on 61 GW of installed capacity, and facilitating a reduction in annual generation costs of more than €0.5bn. However, at 2013 fuel and carbon prices, such additional network capacity allows cheaper high carbon generation to displace more expensive lower carbon plant, increasing coal generation by as much as 24 TWh and thereby increasing CO2 emissions. The results are sensitive to the generation “merit order” and a sufficiently high carbon price would yield up to a 28% decrease in emissions depending on the network case. It is inferred that carbon pricing may impact not only generation investment but also the benefits associated with network development.  相似文献   

10.
Innovative solutions need to be developed for harvesting wind energy far offshore. They necessarily involve on-board energy storage because grid-connection would be prohibitively expensive. Hydrogen is one of the most promising solutions. However, it is well-known that it is challenging to store and transport hydrogen which may have a critical impact on the delivered hydrogen cost.In this paper, it is shown that there are vast areas far offshore where wind power is both characterized by high winds and limited seasonal variations. Capturing a fraction of this energy could provide enough energy to cover the forecast global energy demand for 2050. Thus, scenarios are proposed for the exploitation of this resource by fleets of hydrogen-producing wind energy converters sailing autonomously. The scenarios include transportation and distribution of the produced hydrogen.The delivered hydrogen cost is estimated for the various scenarios in the short term and in the longer term. Cost estimates are derived using technical and economic data available in the literature and assumptions for the cost of electricity available on-board the wind energy converters. In the shorter term, delivered cost estimates are in the range 7.1–9.4 €/kg depending on the scenario and the delivery distance. They are based on the assumption of on-board electricity cost at 0.08€/kWh. In the longer term, assuming an on-board electricity cost at 0.04€.kWh, the cost estimates could reduce to 3.5 to 5.7 €/kg which would make the hydrogen competitive on several hydrogen markets without any support mechanism. For the hydrogen to be competitive on all hydrogen markets including the ones with the highest GHG emissions, a carbon tax of approximately 200 €/kg would be required.  相似文献   

11.
This paper presents specific life cycle GHG emissions from wind power generation from six different 5 MW offshore wind turbine conceptual designs. In addition, the energy performance, expressed by the energy indicators Energy Payback Ratio (EPR) Energy Payback Time (EPT), is calculated for each of the concepts.There are currently few LCA studies in existence which analyse offshore wind turbines with rated power as great as 5 MW. The results, therefore, give valuable additional environmental information concerning large offshore wind power. The resulting GHG emissions vary between 18 and 31.4 g CO2-equivalents per kWh while the energy performance, assessed as EPR and EPT, varies between 7.5 and 12.9, and 1.6 and 2.7 years, respectively. The relatively large ranges in GHG emissions and energy performance are chiefly the result of the differing steel masses required for the analysed platforms. One major conclusion from this study is that specific platform/foundation steel masses are important for the overall GHG emissions relating to offshore wind power. Other parameters of importance when comparing the environmental performance of offshore wind concepts are the lifetime of the turbines, wind conditions, distance to shore, and installation and decommissioning activities.Even though the GHG emissions from wind power vary to a relatively large degree, wind power can fully compete with other low GHG emission electricity technologies, such as nuclear, photovoltaic and hydro power.  相似文献   

12.
Demand for electricity in China is concentrated to a significant extent in its coastal provinces. Opportunities for production of electricity by on-shore wind facilities are greatest, however, in the north and west of the country. Using high resolution wind data derived from the GEOS-5 assimilation, this study shows that investments in off-shore wind facilities in these spatially separated regions (Bohai-Bay or BHB, Yangtze-River Delta or YRD, Pearl-River Delta or PRD) could make an important contribution to overall regional demand for electricity in coastal China. An optimization analysis indicates that hour-to-hour variability of outputs from a combined system can be minimized by investing 24% of the power capacity in BHB, 30% in YRD and 47% in PRD. The analysis suggests that about 28% of the overall off-shore wind potential could be deployed as base load power replacing coal-fired system with benefits not only in terms of reductions in CO2 emissions but also in terms of improvements in regional air quality. The interconnection of off-shore wind resources contemplated here could be facilitated by China's 12th-five-year plan to strengthen inter-connections between regional electric-power grids.  相似文献   

13.
Korea has huge potential for offshore wind energy and the first Korean offshore wind farm has been initiated off the southwest coast. With increasing water depth, different substructures of the offshore wind turbine, such as the jacket and multipile, are the increasing focus of attention because they appear to be cost-effective. However, these substructures are still in the early stages of development in the offshore wind industry. The aim of the present study was to design a suitable substructure, such as a jacket or multipile, to support a 5 MW wind turbine in 33 m deep water for the Korean Southwest Offshore Wind Farm. This study also aimed to compare the dynamic responses of different substructures including the monopile, jacket and multipile and evaluate their feasibility. We therefore performed an eigenanalysis and a coupled aero-hydro-servo-elastic simulation under deterministic and stochastic conditions in the environmental conditions in Korea. The results showed that the designed jacket and multipile substructures, together with the modified monopile, were well located at soft–stiff intervals, where most modern utility-scale wind turbine support structures are designed. The dynamic responses of the different substructures showed that of the three substructures, the performance of the jacket was very good. In addition, considering the simple configuration of the multipile, which results in lower manufacturing cost, this substructure can provide another possible solution for Korean’s first offshore wind farm. This study provides knowledge that can be applied for the deployment of large-scale offshore wind turbines in intermediate water depths in Korea.  相似文献   

14.
Green hydrogen from electrolysis has become the most attractive energy carrier for making the transition from fossil fuels to carbon-free energy sources possible. Especially in the naval sector, hydrogen has the potential to address environmental targets due to the lack of low-carbon fuel options. This study aims at investigating an offshore liquefied green hydrogen production plant for ship refueling. The plant comprises a wind farm for renewable electricity generation, an electrolyzer stack for hydrogen production, a water treatment unit for demineralized water production, and a hydrogen liquefaction plant for hydrogen storage and distribution to ships. A pre-feasibility study is addressed to find the optimal capacities of the plant that minimize the payback time. The model results show that the electrolyzer capacity shall be set equal to a value between 80% and 90% of the wind farm capacity to achieve the minimum payback times. Additionally, the wind farm capacity shall be higher than about 150 MW to limit the payback time to values lower than 11 years for a fixed hydrogen price of 6 €/kg. The Levelized Cost of Hydrogen results to be below 4 €/kg for a wide range of plant capacities for a lifetime of the plant of 25 years. Thus, the model shows that this plant is economically feasible and can be reproduced similarly for different locations by rescaling the different selected technologies. In this way, the naval sector can be decarbonized thanks to a new infrastructure for the production and refueling of liquified green hydrogen directly provided on the sea.  相似文献   

15.
Since the turn of the 21st century, the onshore wind industry has seen significant growth due to the falling cost of wind generated electricity. This growth has coincided with an interest in the development of offshore wind farms. In Europe, governments and developers have begun establishing small to medium sized wind farms offshore to take advantage of stronger and more constant winds and the relative lack of landowner conflicts. In the U.S., several developers are in the planning and resource evaluation phases of offshore wind farm development, but no wind farms are currently operational or under construction. In this paper, we analyze the patterns of development in Europe and compare them to the U.S. We find significant differences in the patterns of development in Europe and the U.S. which may impact the viability of the industry in the U.S. We also discuss the policies used by European nations to stimulate offshore wind development and we discuss the potential impacts of similar policies in the U.S.  相似文献   

16.
A probabilistic formulation is proposed to assess the performance of the support structure of offshore wind turbines based on their probability and expected time of exceeding specified drift thresholds. To this end, novel probabilistic models are developed to predict the mean and standard deviation of the drift ratio response of wind turbine support structures operating under day-to-day loads as a function of the wind turbine geometry and material properties, and loading conditions. The proposed models are assessed using a database of virtual experiments generated using detailed three-dimensional (3D) nonlinear finite element (FE) models of a set of representative wind turbine configurations. The developed models are then used in a random vibration formulation to estimate the probability and expected time of exceeding specified drift thresholds. As an example, the probability and expected time of exceeding specified drift thresholds are estimated for a typical offshore wind turbine at different wind speeds. A comparison is made between the results obtained based on the proposed models, those obtained using simulators commonly used in practice and detailed 3D nonlinear FE analyses.  相似文献   

17.
Offshore wind energy is a promising source of renewable electricity, even though its current costs prevent large-scale implementation. Technological learning has improved the technology and its economic performance already, and could result in significant further improvements. This study investigates how technological learning takes place in offshore wind energy and how technological learning is related to different policy regimes. Offshore wind energy developments in Denmark and the United Kingdom have been analysed with a technology-specific innovation systems approach. The results reveal that the dominant forms of learning are learning by doing and learning by using. At the same time, learning by interacting is crucial to achieve the necessary binding elements in the technology-specific innovation system. Generally, most learning processes were performed by self-organizing entities. However, sometimes cultural and technical barriers occurred, excluding component suppliers and knowledge institutes from the innovation system. Danish policies successfully anticipated these barriers and removed them; therefore, the Danish policies can be characterized as pro-active. British policies shaped stable conditions for learning only; therefore, they can be characterized as active. In the future, barriers could hinder learning by interacting between the oil and gas industry, the offshore wind industry and academia. Based on this study, we suggest national and international policy makers to design long-term policies to anticipate these barriers, in order to contribute to technological learning.  相似文献   

18.
Considering nonlinear soil–pile interaction, seismic fragility analysis of offshore wind turbine was performed. Interface between ground soils and piles were modeled as nonlinear spring elements. Ground excitation time histories were applied to spring boundaries. Two methods of applying ground motion were compared. Different time histories from free field analysis were applied to each boundary in the first loading plan (A). They were compared with the second loading plan (B) in which the same ground motion is applied to all boundaries. Critical displacement for wind turbine was proposed by using push-over analysis. Both the stress based and the displacement based fragility curves were obtained using dynamic responses for different peak ground accelerations (PGAs). In numerical example, it was shown that seismic responses from loading plan A are bigger than from plan B. It seems that the bigger ground motion at surface can cause less response at wind turbine due to phase difference between ground motions at various soil layers. Finally, it can be concluded that layer by layer ground motions from free field analysis should be used in seismic design of offshore wind turbine.  相似文献   

19.
Over the past few years, hydrogen has been recognized as a suitable substitute for present vehicular fuels. This paper covers the economic analysis of one of the most promising hydrogen production methods—using wind energy for producing hydrogen through electrolysis of seawater—with a concentration on the Indian transport sector. The analysis provides insights about several questions such as the advantages of offshore plants over coastal installations, economics of large wind-machine clusters, and comparison of cost of producing hydrogen with competing gasoline. Robustness of results has been checked by developing several scenarios such as fast/slow learning rates for wind systems for determining future trends. Results of this analysis show that use of hydrogen for transportation is not likely to be attractive before 2012, and that too with considerable learning in wind, electrolyzer and hydrogen storage technology.  相似文献   

20.
Energy planners have shifted their attention towards offshore wind power generation and the decision is supported by the public in general, which in the literature has a positive attitude towards offshore wind generation. However, globally only a few offshore wind farms are operating. As more wind farms start operating and more people become experienced with especially the visual impacts from offshore wind farms, the public positive attitude could change if the experienced impacts are different from the initially perceived visual interference. Using a binary logit model, the present paper investigates the relation between different levels of prior experience with visual disamenities from offshore wind farms and perception of visual impacts from offshore wind farms. The differences in prior experience are systematically controlled for sampling respondents living in the areas close to the large scale offshore wind farms Nysted and Horns Rev and by sampling the a group of respondents representing the Danish population, which has little experience with offshore wind farms. Compared to previous results in the literature, the present paper finds that perception of wind power generation is influenced by prior experience. More specifically, the results show that people with experience from offshore wind farms located far from the coast have a significant more positive perception of the visual impacts from offshore wind farms than people with experience from wind farms located closer to the coast. These results are noteworthy on two levels. First of all, the results show that perceptions of offshore wind generation are systematically significantly influenced by prior experience with offshore wind farms. Secondly, and in a policy context, the results indicate that the future acceptance of future offshore wind farms is not independent of the location of existing and new offshore wind farms. This poses for caution in relation to locating offshore wind farms too close to the coast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号