首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase formation stages of MgWO4 and ZnWO4 (precursor compositions for following steps) were investigated by monitoring the reactions of oxide chemicals at various temperatures. Developed phases were examined by using X-ray diffraction (XRD). Successive attempts were also conducted for Pb(Mg1/2W1/2)O3 (PMW) and Pb(Zn1/2W1/2)O3 (PZW) by reacting PbO with the precursor compounds. Stages of phase development in the two compositions were also analyzed. The results are compared with those of another tungsten-containing perovskite Pb(Fe2/3W1/3)O3 (PFW) and its B-site precursor Fe2WO6. After PbO addition to the precursor powders, a perovskite phase formed directly (i.e., without any intermediate phases) in the case of PMW. For PbO + ½ZnWO4, in contrast, the decomposition of ZnWO4 and preferential reaction with PbO resulted in Pb2WO5 and ZnO, instead of the perovskite PZW.  相似文献   

2.
《Materials Letters》2004,58(7-8):1358-1362
A PbTiO3 component of 20 mol% was substituted into a Pb[(Zn1/3Ta2/3),(Mg1/3Nb2/3)]O3 system to promote the perovskite formation, especially at Pb(Zn1/3Ta2/3)O3-rich compositions. Perovskite formation yields after the heat treatments were determined by X-ray diffraction. Weak-field dielectric properties of the ceramics were investigated as functions of temperature and frequency. A quite high value of the maximum dielectric constant (37,900 at 1 kHz) was realized, whereas the dielectric maximum temperatures of the entire compositions stayed nearly constant. Microstructure developments in the sintered ceramics were also examined.  相似文献   

3.
Pb(Zn1/3Ta2/3)O3-PbTiO3 ceramic compositions were modified by the introduction of Nb to the octahedral lattice sites. Resultant tendencies in the perovskite formation and dielectric properties were examined. System powders were prepared using a B-site precursor method. Developed structures and lattice parameters of the system compositions were investigated by powder X-ray diffractometry, from which the parameter of a hypothetical perovskite Pb(Zn1/3Ta2/3)O3 is proposed. Weak-field low-frequency dielectric responses of the system ceramics were measured.  相似文献   

4.
Ceramic powders of the Pb(Zn1/3Ta2/3)O3-introduced BaTiO3–PbTiO3 system were prepared using a B-site precursor method. Perovskite formation tendencies of the system compositions were determined by X-ray diffraction. Weak-field low-frequency dielectric properties of the sintered ceramics were investigated. Dielectric constant spectra were further analyzed in terms of diffuseness. Internal microstructures of the ceramics were also examined.  相似文献   

5.
Pb(Zn1/3Ta2/3)O3 ceramics, compositionally modified by the incorporation of Fe to the octahedral lattice sites, were prepared and characterized in terms of perovskite development, dielectric properties, as well as microstructure evolution. The powders of the B-site precursor compositions were synthesized separately and reacted with PbO to form Pb[(Zn1/3Ta2/3),(Fe1/2Ta1/2)]O3. The perovskite contents increased continuously with the Fe concentration. The maximum dielectric constant values of the ceramics increased tremendously with the fraction of Fe, whereas the dielectric maximum temperatures were rather insensitive to the compositional change.  相似文献   

6.
Stabilization tendencies of the perovskite structure in a Pb(Zn1/3Ta2/3)O3-BaTiO3 pseudobinary system with/without compositional modification by 20 mol% PbTiO3 introduction were compared. In order to promote perovskite phase formation, the B-site precursor method (which is conceptually similar to the columbite process) was employed in this study. Dielectric properties of sintered samples were investigated as functions of composition and measurement frequency. Dielectric constant spectra, in the paraelectric temperature region, were further analyzed in terms of diffuseness. Microstructures of sintered specimens were also investigated and correlated with perovskite stabilization.  相似文献   

7.
The phase stability ranges in the B-site precursor (Zn1/2W1/2)O2-(Zn1/3Ta2/3)O2-(Zn1/3Nb2/3)O2 were determined by X-ray diffraction (XRD), where wolframite, tri-αPbO2, and columbite phases were identified. Next attempts were carried out (with the addition of PbO) for the system Pb(Zn1/2W1/2)O3-Pb(Zn1/3Ta2/3)O3-Pb(Zn1/3Nb2/3)O3, where the perovskite phase did not develop in the entire compositions investigated. Instead, only the Pb2WO5 and pyrochlore phases (along with ZnO) resulted.  相似文献   

8.
Pyrochlore-free Pb(Ni1/3Nb2/3)O3 perovskite ceramics produced by a simple and effective reaction-sintering process were investigated. Without any calcination, the mixture of PbO, Ni(NO3)2 and Nb2O5 was pressed and sintered directly into PNN ceramics. Density of 98.5% of theoretical value was obtained after sintered at 1230 °C for 2 h in air. 99.3% of theoretical density was obtained after sintered at 1,200 °C for 2 h in PbO compensated atmosphere. PNN ceramic with dielectric constant 1,680 at 25 °C and 1 kHz has been obtained.  相似文献   

9.
Ternary perovskite ceramics of Pb[(Zr0.5Ti0.5)0.8−x (Mg1/3Nb2/3)0.2+x]0.98Nb0.02O3.01 (PZTMN, x = −0.075, −0.05, −0.025, 0, 0.025, 0.05, and 0.075 ), are synthesized via dry–dry method. B-site precursors of PZTMN ([(Zr0.5Ti0.5)0.8−x (Mg1/3Nb2/3)0.2+x ]0.98Nb0.02O2.01, ZTMN) can be synthesized via a two-step solid state reaction method. The first calcination temperature is 1,300 °C, and the second is not higher than 1,360 °C. Incorporation of magnesium and niobium ions promotes the formation of the single phase solid solution with ZrTiO4 structure. Single phase perovskite PZTMN is formed at 780 °C, much lower than that in conventional process. Dense ceramics can be sintered at about 1,260 °C with dielectric and piezoelectric properties comparable to that of wet–dry method and higher than that of conventional method. It seems that B-site precursor method is cost effective in preparation of ternary piezoelectric ceramics.  相似文献   

10.
Stabilization of a perovskite structure was attempted by replacing Mg for Zn in Pb(Zn1/3Ta2/3)O3. System powders were prepared using a B-site precursor method by reacting PbO with separately-prepared precursor compositions. Effects of the substituent Mg concentration on perovskite phase developments and subsequent changes in dielectric properties were investigated, as a function of measurement frequency. Phase transition modes reflected in the dielectric constant spectra were analyzed in terms of diffuseness exponent and degree of diffuseness. Internal microstructures of the ceramics were examined, and correlations with perovskite phase contents and dielectric properties are discussed.  相似文献   

11.
Ceramic powders of (Ba,Pb)Pb(Mg1/3Ta2/3)O3 were prepared via a B-site precursor route. Crystal symmetries and lattice parameters were determined. Monophasic perovskite was developed after the two-step reaction process, in which the lattice parameters showed linear changes in the entire composition range. Dielectric responses of the ceramics with compositional and frequency changes were investigated. The results were also compared with the (Ba,Pb)(Zn1/3Ta2/3)O3 data.  相似文献   

12.
Perovskite phase formation and dielectric/ferroelectric properties of the pseudo-ternary Pb(Fe1/2Nb1/2)O3-PbZrO3-PbTiO3 (PFN-PZ-PT) ferroelectric ceramics have been investigated as promising materials for multi-layer ceramic capacitors. Complete solid solution with pure perovskite phase can be formed in this system in the whole composition range studied using conventional solid-state reaction method via a B-site oxide mixing route. Crystal lattice of the ceramics obtained shrinkages with the increase of the concentration of Pb(Fe1/2Nb1/2)O3 (PFN) and expands with the increase of the content of PbZrO3 (PZ). With the increase of the concentration of PbTiO3 (PT), crystal structure of PFN-PZ-PT changes from pseudo-cubic ferroelectric phase to tetragonal one while retains the fraction of PFN as constant. A morphotropic phase boundary (MPB) forms at the composition of 42 mol% PT regardless of whatever concentration of PFN, and the content of PFN affects little on the composition of MPB. The preliminary phase diagram of the PFN-PZ-PT system is determined by X-ray diffraction (XRD) measurements combining with dielectric/ferroelectric characterization. Dielectric measurements indicate that the value of dielectric maximum (ɛm) and the temperature where ɛm appears (Tm) increase with the increase of the concentration of PT. However, PFN exhibits opposite effects, i.e., ɛm increases with the increase of the concentration of PFN accompanied by the decrease of Tm.  相似文献   

13.
Lead-free perovskite Ba(Sb1/2Nb1/2)O3 was prepared by conventional ceramic fabrication technique at 1200 °C/5 h in air atmosphere. The crystal symmetry, space group and unit cell dimensions were determined from the experimental results using FullProf software whereas crystallite size and lattice strain were estimated from Williamson–Hall approach. XRD analysis of the compound indicated the formation of a single-phase monoclinic structure with the space group P2/m. EDAX and SEM studies were carried out to evaluate the quality and purity of the compound. Dielectric study revealed the frequency-dependent dielectric anomaly. To find a correlation between the response of the real system and idealized model circuit composed of discrete electrical components, the model fittings were presented using the impedance data. Complex impedance analyses suggested the dielectric relaxation to be of non-Debye type. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in Ba(Sb1/2Nb1/2)O3. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy of the compound.  相似文献   

14.
To develop new (Bi1/2Na1/2)TiO3-based ceramics with excellent piezoelectric properties, the similarities and the differences between PZT and (Bi1/2Na1/2)TiO3 ceramics were analysed. Based on the analysis, a new (Bi1/2Na1/2)TiO3-based piezoelectric ceramic of B-site substitution of complex ions (Mg1/3Nb2/3)4+ for Ti4+ was prepared by a conventional ceramic technique, and effect of complex ions (Mg1/3Nb2/3)4+ addition on the microstructure, dielectric and piezoelectric properties was investigated. The results show that all compositions are mono-perovskite phase and the grain size increases with increasing content of (Mg1/3Nb2/3)4+. The piezoelectric constant, d 33, first increases and then decreases, and electromechanical coupling factor, k p, varies insignificantly with increasing content of (Mg1/3Nb2/3)4+.  相似文献   

15.
《Materials Research Bulletin》2006,41(12):2251-2259
Bi(Mg2/3Nb1/3)O3 was systematically substituted (up to 30 mol%) into Pb(Mg1/3Nb2/3)O3–PbTiO3 and resultant changes in the phase formation, crystallographic aspects as well as dielectric properties of the ceramic samples were investigated. Columbite and rutile solid solutions were mostly detected in the B-site precursor compositions, whereas only a monophasic perovskite structure was identified after the addition of PbO and Bi2O3. Frequency-dependent dielectric relaxation behavior was observed in all of the compositions investigated. The maximum dielectric constant values decreased substantially with increasing substituent fractions of Bi. By contrast, the dielectric maximum temperatures changed in somewhat complicated ways in that the increase became comparatively insensitive to the PbTiO3 concentration with increasing levels of Bi substitution.  相似文献   

16.
《Materials Letters》2006,60(13-14):1603-1606
The phase structure and dielectric properties of (1  x)Pb(Zn1/3Ta2/3)O3xBaTiO3 (x = 0.00–0.40) ceramics were investigated. Pure perovskite is obtained when x  0.24. With increasing BT content, the diffuse phase transition and frequency dissipation of the dielectric constant increase and the dielectric maxima temperature decreases. It is related to the existing of Ba(Zn1/3Ta2/3)O3 paraelectric microregions and the incomplete solid solution reaction between Pb(Zn1/3Ta2/3)O3 and BaTiO3.  相似文献   

17.
Ceramic samples of lead magnesium niobate (PMN) and (1 ? x)Pb(Mg1/3Nb2/3)O3?xPbTiO3 (PMN-PT) solid solutions with x = 0, 0.05, 0.10, and 0.30 have been prepared by solid-state reactions, and their structural, electrical, and piezoelectric properties have been studied using x-ray diffraction, Rietveld profile analysis, impedance spectroscopy, and the resonance/antiresonance method. The results indicate that the use of nonstoichiometric columbite niobates enables the synthesis of phase-pure PMN and PMN-PT.  相似文献   

18.
Dense Ca(Zn1/3Nb2/3)O3/NiZn ferrite composites with homogeneously fine microstructures were prepared through conventional solid-state method. The powder XRD patterns confirm the coexistence of the two phases. The dielectric properties in the low frequency range (100 Hz–1 MHz) follow the rule of Maxwell–Wagner interfacial polarization. The dielectric and magnetic properties in the high frequency range (10 MHz–1 GHz) are also reported. The results show that this kind of magnetic–dielectric composites could be used in high-frequency communications for the capacitor-inductor integrating devices such as electromagnetic interference filters and antennas.  相似文献   

19.
The formation mechanisms of Li x Na1 ?x Ta y Nb1 ? y O3 perovskite solid solutions in the Li2CO3-Na2CO3-Nb2O5-Ta2O5 system have been studied by x-ray diffraction, differential thermal analysis, thermogravimetry, IR spectroscopy, and mass spectrometry at temperatures from 300 to 1100°C. The results indicate that the synthesis of Li x Na1 ? x Ta y Nb1 ? y O3 solid solutions involves a complex sequence of consecutive and parallel solid-state reactions. An optimized synthesis procedure for Li x Na1 ? x Ta y Nb1 ? y O3 solid solutions is proposed.  相似文献   

20.
Dielectric ceramic thin films were fabricated on SiO2 (110) substrates by the radio frequency (RF) magnetron sputtering method using (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 microwave dielectric ceramic as target. The microstructure, components, and morphology of the thin films were investigated thoroughly. The results reveal that the experimental conditions can affect the growth of the thin films significantly. The main phases of the thin films are Ba0.5Sr0.5Nb2O6 and Ba0.27Sr0.75Nb2O5.78, which are of different composition from that of the ceramic target due to Zn loss. The thin films are polycrystalline with high-quality crystalline and are made up of dense rod-like structures. The growth mechanism of the thin films is discussed in particular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号