首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
鉴于非下采样Contourlet变换(NSCT)系数包含原始图像各方向的所有细节信息,以及改进BP神经网络高度非线性映射的快速收敛和准确性,提出一种应用NSCT和改进BP神经网络的超分辨率图像重建算法。分别提取模拟超分辨率图像与相应低分辨率图像各方向子带的NSCT系数进行BP神经网络高度非线性映射训练,直至稳定收敛,并利用该网络实现超分辨率图像重建。实验结果表明该算法在很好保留图像细节的同时极大地降低网络重建复杂度,提高了重建的准确率,重建效果得到明显改进。  相似文献   

2.
非下采样Contourlet变换(Nonsubsampled contourlet transform,NSCT)采用非抽样金字塔结构和非抽样方向滤波器组构成,具有Contourlet变换所不具备的平移不变性、较高冗余度等优良特性,而且能够克服伪吉布斯现象。图像经过非下采样Contourlet变换后分解成多尺度、多方向的细节信息,这些细节信息代表了图像不同频带不同方向的特征,这就简化了系数之间的关系。基于学习的超分辨率重建算法具有整体的预测性,将非下采样Contourlet变换和基于学习的算法相结合,在一定程度上提高训练精度。针对指纹图像的实验证明该算法具有良好的性能,重建的图像纹理性细节信息较好,基本保持了原指纹图像的特征点,更接近于原始的高分辨率图像。  相似文献   

3.
成云凤  汪伟 《控制工程》2023,(5):830-840
随着医疗设备的不断改进,医学图像质量得到了大幅度提升。但是,受图像采集时间和人体承受放射剂量的限制,医学图像分辨率仍需进一步改进。在图像稀疏表示的相关理论中,双字典将图像高频细节信息看作是主要高频和残留高频的组合。基于此,提出一种基于双字典的医学图像超分辨率重建算法。首先,采用非下采样Contourlet变换提取图像特征;然后,这些特征被用于训练主字典和残差字典;最后,利用两种字典恢复出图像的主高频和残留高频,并将两种高频信息叠加到低分辨率图像上,实现重建高分辨率医学图像。实验结果表明,所提算法能有效提高重建图像质量,其性能优于其他几种算法。  相似文献   

4.
基于非下采样Contourlet变换的图像边缘检测   总被引:1,自引:0,他引:1       下载免费PDF全文
以非下采样Contourlet变换为基础,充分利用了该变换的尺度相关性以及各个尺度方向子带系数的方向性,提出了一种新的图像边缘检测的方法。通过实验,验证了新方法可以更好地把握图像的曲线或直线状边缘特征,与基于小波模的极大值边缘检测方法相比,效果更好。  相似文献   

5.
医学影像分辨率的提高能够有效帮助医生作出诊断,针对口腔环境复杂性和牙齿拓扑结构多样性的问题,提出一种基于齿科序列图像的超分辨率重建算法.通过对点集筛选和配准策略的优化,以及引入鲁棒损失函数,改进了传统的迭代最近邻点配准法,用于序列图像间的配准;然后针对齿科序列图像非下采样Contourlet变换域内不同的子带信息,采用了特定的子带系数融合策略,用于子带信息融合;最后基于非下采样Contourlet反变换得到了高分辨率齿科图像.实验结果表明,本文算法提高了重建指标,具有较强的鲁棒性.  相似文献   

6.
多分辨率图像序列的超分辨率重建   总被引:1,自引:0,他引:1  
李展  张庆丰  孟小华  梁鹏  刘玉葆 《自动化学报》2012,38(11):1804-1814
针对不同焦距下拍摄的多分辨率尺度的图像序列,本文提出了一种基于尺度不变特征转换(Scale invariant feature transform, SIFT)和图像配准的超分辨率(Super resolution, SR)图像盲重建算法.首先提取图像SIFT特征点,然后用向量夹角余弦进行特征描述符向量的初匹配,并用随机抽样一致性 (Random sample consensus, RANSAC)算法消除误匹配提高配准精度.计算变换参数后,将低分辨率图像(Low-resolution, LR)像素点映射到高分辨率(How-resolution, HR)网格,最后利用像素可信度加权算法填充缺失像素值,重建更高分辨率的图像.实验表明, 本文算法能精确估计图像序列的缩放因子,可以有效处理仿射变换模型,对配准误差也具有一定的鲁棒性.算法从实质上提高了多分辨率尺度图像序列的分辨率,尤其在低分辨率帧数较少可用于重建的信息量严重不足时也能获得比较满意的重建效果.  相似文献   

7.
在基于非下采样Contourlet变换(NSCT)上提出了一种新的图像融合算法。对经NSCT的低频子带系数采取基于区域能量自适应加权的融合规则,对高频子带系数采用一种混合的融合规则,即选用基于区域强度比的加权选择融合策略进行低层的选择,高层采用像素点的绝对值取大的方法进行选取。实验结果表明,该算法在目视判别以及客观标准下明显优于文中其他基于多尺度分析的图像融合算法,可获得较理想的融合图像。  相似文献   

8.
基于非下采样Contourlet 变换的多分辨率图像融合方法   总被引:1,自引:0,他引:1  
提出了一种基于非下采样contourlet 变换(NSCT) 的多分辨率图像融合方法,通过非下采样金字 塔(NSP) 和非下采样方向滤波器组(NSDFB) 实现对图像的多尺度多方向分解.该方法既保留了contourlet 变换 方法良好的多分辨率特性,又具有平移不变性.在融合处理中,采用一种改进的一致性校验策略;在高频系 数中除了进行本层的一致性校验外,还进行多层之间的一致性校验.实验结果表明,该方法取得了良好的融 合效果,所得融合图像的多项指标都优于拉普拉斯金字塔变换、小波变换、contourlet 变换等方法.  相似文献   

9.
基于非下采样Contourlet的图像融合   总被引:2,自引:0,他引:2  
张义飞 《微计算机信息》2007,23(27):283-284,119
本文提出了一种基于非下采样Contourlet变换的图像融合方法。与Contourlet变换相比,非下采样Contourlet变换不仅具有多尺度、多方向特性,同时还具备平移不变性。文中针对非下采样Contourlet变换的特点和人眼的视觉特性,在较粗尺度采用对比度融合规则,较细尺度采用局部方差最大化规则,低频采用平均规则。该方法不但继承了Contourlet变换对方向信息融合的优点,同时又有效地去除了Contourlet变换中出现的吉布斯现象。仿真实验表明,本文方法优于Contourlet变换以及现有的小波,非下采样小波等方法。  相似文献   

10.
不断加深网络的深度可提高网络的超分辨率重建效果,但是网络的加深会导致网络参数量急速增加,难以进行网络训练和内存存储.为了减小深度网络的参数规模并尽量保持网络的重建性能,基于递归和多尺度的思想,文中提出精简的基于递归多尺度卷积网络的图像超分辨率重建方法.首先利用多尺度模块充分提取图像在不同尺度下的特征信息,再通过递归操作实现网络规模的加深而不增加网络的参数量,最后将每次递归操作的输出进行特征融合,作为高分辨率图像重建的输入.实验表明,文中方法在网络参数量较少时重建效果较优.  相似文献   

11.
分析了非抽样Contourlet变换(Nonsubsampled Contourlet Transform,NSCT)的原理,提出了一种新的基于NSCT的医学图像融合算法,应用NSCT对CT和MRI图像进行多尺度、多方向分解,低频子带采取区域能量加权法融合,带通子带采取模最大融合,最后将融合的系数进行NSCT逆变换得到融合图像。实验表明,与其它融合算法比较,该算法融合图像效果较好。  相似文献   

12.
基于多阈值的非下采样轮廓波图像去噪方法   总被引:3,自引:1,他引:3       下载免费PDF全文
非下采样轮廓波变换(NSCT)是一种新的多尺度几何分析工具,具有平移不变性、多方向性和各向异性。与小波变换相比,NSCT能更好地表示图像中的边缘等信息。对合成孔径雷达图像进行NSCT分解,考虑其系数统计特性,基于BayesShrink对每个分解层的各个子带做多层阈值估计和软阈值收缩处理。实验结果表明,采用该方法得到的图像在视觉效果和客观衡量指标上均符合要求。  相似文献   

13.
基于非子采样Contourlet变换的图像融合方法   总被引:5,自引:1,他引:5  
分析了非子采样Contourlet变换滤波器组的设计与实现方法,提出一种基于非子采样Contourlet变换的图像融合方法.首先将图像作非子采样拉普拉斯金字塔尺度分解,并在各尺度层使用非子采样方向滤波器组对高频子带作方向分解,构成非子采样Contourlet变换;然后,采用基于区域能量的融合规则得到融合图像的非子采样Contourlet系数;最后进行非子采样Contourlet逆变换得到融合图像.实验结果表明,该方法的融合效果优于à trous小波变换方法和Mallat小波变换方法.  相似文献   

14.
针对融合后图像模糊现象,提出一种基于非向下采样contourlet的自适应图像融合算法.分析了轮廓波变换和非抽样轮廓波变换的原理,采用非向下采样contourlet对图像进行分解,依据低频变化设置阈值来调节低频变化率和均匀度在决策规则中所占的比例.当低频变化率之差高于阈值时,采用基于均匀度的融合规则;当低频变化率之差低于阈值时,采用基于变化率的融合规则.对于高频部分则采用高频系数对比度的处理策略.通过熵、相对误差和清晰度对实验结果进行了评价,结果表明,基于非向下采样contourlet的自适应融合算法取得了良好的融合效果.  相似文献   

15.
陈秀梅  王敬时  王伟  赵扬  汤敏 《计算机科学》2015,42(11):299-304
压缩感知是一种全新的信息采集与处理的理论框架,借助信号内在的稀疏性或可压缩性,可从小规模的线性、非自适应的测量值中通过非线性优化的方法精确重构信号。压缩感知以远低于奈奎斯特频率的采样频率,在压缩成像系统、医学图像处理等领域有着广阔的应用前景。提出算法采用非下采样轮廓波变换稀疏表达原始图像,通过傅立叶矩阵进行测量,最后采用迭代软阈值算法实现医学MRI图像的压缩感知重构。以峰值信噪比、互信息、伪影功率为评价指标,比较小波变换、频率局部化轮廓波变换以及非下采样轮廓波变换三者的压缩感知重构效果。实验结果表明,无论采样率设置如何变化,提出算法在峰值信噪比、原始信息保留比例以及重构精度等方面均具有明显优势,在快速医学成像领域具有广阔的应用前景。  相似文献   

16.
许占伟  张涛 《计算机工程》2011,37(16):209-211
为得到更好的融合效果,将特征级融合与像素级融合相结合,利用Contourlet变换(CT)对源图像进行分解,对于近似图像,利用Canny算子进行边缘检测以得到边缘特征图像,再以边缘特征图像作为交叉视觉皮质模型的输入,根据各神经元的点火次数进行融合;对于细节图像,根据区域能量系数矩阵进行融合.通过多聚焦闹钟图像和CT、M...  相似文献   

17.
针对轮廓波变换方向子带中的频谱混叠现象及传统KLD方法度量隐马尔科夫模型间距离的局限性,提出结合改进KLD度量的抗混叠轮廓波隐马尔科夫树(HMT)纹理图像检索方法。利用抗混叠轮廓波变换抑制频谱混叠的特点对纹理进行分解,建立HMT模型并将其训练后的参数集视为纹理特征,利用改进KLD方法满足三角不等式的优点度量HMT模型间的距离,提高纹理图像检索精度。理论和实验结果表明,该算法的查准率比CT-HMT+传统KLD方法提高了2.81%。  相似文献   

18.
现在是用数字图像进行临床诊断的时代。文章提出了一种结合非采样轮廓波变换(NSCT)和脉冲耦合神经网络(PCNN)优点的肿瘤检测方法。该方法首先分别对一组正常人的脑部CT和MRI图像及一位40岁酗酒男性的脑部MRI和PET图像施行三次样条插值配准,并进行非采样轮廓波变换获取其高频和低频信息。将低频子带系数输入PCNN神经元经计算获得融合图像低频系数,对于高频部分对比度被用于激化PCNN网络。最后经逆NSCT变换生成融合图像,并将该图像用Canny算子进行边缘检测。结果显示第一组的融合图像中高密度组织得到了增强并减少了像素扭曲且肿瘤组织能被检测,第二组的融合图像清晰显示了脑部解剖结构同时壳核、尾状核也到得了明确定位。由于非采样轮廓波变换优良的方向性和几何表达能力,该方法能够为外科医生提供精确的肿瘤定位方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号