首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Byoung H. Lee 《Thin solid films》2010,518(22):6432-6436
A UV-enhanced atomic layer deposition (UV-ALD) process was developed to deposit ZrO2 thin films on poly(ethylene terephthalate) (PET) polymer substrates using zirconium tetra-tert-butoxide (ZTB) and H2O as precursors with UV light. In the UV-ALD process, the surface reactions were found to be self-limiting and complementary enough to yield uniform, conformal, and pure ZrO2 thin films on polymer substrates at room temperature. The UV light was very effective to obtain the high-quality ZrO2 thin films with good adhesive strength on polymer substrates. The ZrO2 thin films exhibit large-scale uniformity, sharp interfaces, and unique electrical properties.  相似文献   

2.
This paper shows the ex situ thermal treatment effects of the ZrO2 thin films obtained by TVA (thermionic vacuum arc) technique on the optical properties (e.g., transmittance, refractive index and band-gap energy) of ZrO2 thin films. The crystal structure, surface and optical properties were investigated for ZrO2 thin films deposited on glass substrates by thermionic vacuum arc (TVA) method. The thermal treatment effect on the optical properties of the thin films was determined. The XRD analysis showed that the deposited ZrO2 thin films have baddeleyite (monoclinic) and zirconium (hexagonal) structures. The thicknesses and refractive index were determined by interferometric measurements. The thin films were thermal treated at different temperatures (350 °C, 450 °C and 550 °C), and the analysis showed that the optical properties of ZrO2 deposited thin films were improved by thermal treatment at 450 °C.  相似文献   

3.
C.Y. Ma  Q.Y. Zhang 《Vacuum》2008,82(8):847-851
In this work, the interfacial layer growth for both as-deposited and annealed ZrO2 thin films on silicon is analyzed in detail by the high-resolution cross-sectional transmission electron microscope and spectroscopic ellipsometry. For as-deposited ZrO2/SiO2/Si, the thickness of a SiO2-like layer at the silicon interface was found to depend on the oxygen partial pressure during deposition. At oxygen partial pressure ratio of above 50% the interfacial silicon oxide thickness increased through oxygen diffusion through the ZrO2 film and silicon consumption at the interface. At oxygen partial pressure ratio in the range 7-50%, the visible growth of interfacial silicon oxide layer was not present. The interfacial layer for ZrO2/Si with optimal partial pressure (15%) during annealing at 600 °C was found to be the two-layer structure composed of the ZrSixOy overlayer and the SiOx downlayer. The formation of the interfacial layer is well accounted for diffusion mechanisms involving Si indiffusion and grain-boundary diffusion.  相似文献   

4.
The effect of zirconium dioxide addition on crystal structure of sol-gel TiO2 mesoporous films and powders has been investigated by means of Raman spectroscopy, X-Ray diffraction, and Atomic force microscopy. Zirconium incorporation (up to 30 mol%) into TiO2 lattice resulted in the formation of Ti1 − xZrxO2 solid solution with anatase structure for the binary powders has been proved. Appearance of tetragonal ZrO2 phase was observed for the samples with high zirconium content.  相似文献   

5.
Hydrated ZrO2 thin films were prepared by reactive sputtering in O2, H2O, and H2O + H2O2 mixed gas, and the effect of the sputtering atmosphere on ion conductivity of the films was investigated. The results showed that the films deposited in O2 gas exhibited poor ion conductivity; however, the ion conductivities of the films deposited in the other two kinds of atmosphere were similar and 300-500 times higher than that of the films deposited in O2 gas. It was indicated that the higher ion conductivity of the films was caused by lower film density and higher water content.  相似文献   

6.
Uniform Al2O3 films were deposited on silicon substrates by the sol–gel process from stable coating solutions. The technological procedure includes spin coating deposition and investigating the influence of the annealing temperature on the dielectric properties. The layers were studied by Fourier transform infrared spectroscopy and Scanning Electron Spectroscopy. The electrical measurements have been carried out on metal–insulator–semiconductor (MIS) structures. The C–V curves show a negative fixed charge at the interface and density of the interface state, Dit, 3.7 × 1011 eV− 1cm− 2 for annealing temperature at 750 °C.  相似文献   

7.
C Amory  J.C Bernède 《Vacuum》2004,72(4):351-361
Textured MoTe2 films have been prepared by sequential evaporation of the constituents followed by annealing under a tellurium pressure. The films are systematically textured with the c-axis of the crystallites perpendicular to the plane of substrate, however, the film composition is difficult to control and even after process optimization the films are tellurium deficient. This is thought to be caused by the electro negativity difference of the constituents.The textured MoTe2 films have been used as substrates on which to grow MoS2 films by annealing under a pressure of sulfur that allows textured MoS2 films to be grown with good crystalline properties. The presence of sulfur at the surface and annealing under dynamic vacuum is important for this process and moreover, suppresses the superficial oxidation of the Mo and Te constituents.  相似文献   

8.
ZrO2 films were deposited by reactive gas flow sputtering (GFS) where voltage is applied to a cyindrical hollow-cathode target from a DC source, the discharge being produced at relatively high sputtering pressure. In this system, secondary electrons form a major component of the total current flow and lead to heating of the substrate which in turn has an effect on the properties of deposited films. The present experiments were carried out under the following conditions: Ar gas flow rate of 200 sccm, O2 flow rate FO2 in the range between 0.003 and 1 sccm, and sputtering power (PS) in the range of 50-800 W. The reults showed that the crystal structure of the films deposited for PS below 200 W was monoclinic but for PS above 400 W, the films included tetragonal cystals of stable structure formed at high temperature by the electron bombardment. The films were formed with grains of 20-100 nm in diameter in a porous structure. The mechanical properties of the films were determined by a nanoindentation technique. Martens hardness (HM) of the porous films was found to be in the range between 220 and 330 MPa which is substantially less than that of films typically deposited by rf magnetron sputtering.  相似文献   

9.
Phase transformation and morphology evolution of ZrO2/Al2O3/ZrO2 laminate induced by the post-deposition NH3 annealing at 480 °C were studied and the effect on the electrical property of the TiN/ZrO2/Al2O3/ZrO2/TiN capacitor module was evaluated in dynamic random access memory cell. Experimental results indicated N could indeed be incorporated into the dielectric laminate by the low-temperature NH3 annealing, resulting in tetragonal-to-cubic phase transformation and small crystallites in the ZrO2 layers. The C residue and Cl impurity in the ZrO2/Al2O3/ZrO2 laminate, which derived from the dielectric film formation and capping TiN layer deposition, respectively, could also be reduced by the nitridation process. As a result of the better surface morphology and less impurity content, lower dielectric leakage current and longer reliability lifetime were observed for the nitrided ZrO2/Al2O3/ZrO2 capacitor. This study demonstrates the low-temperature NH3 annealing on ZrO2/Al2O3/ZrO2 dielectric can be applicable to the metal-insulator-metal capacitor structure with nitride-based electrode, which brings advantages over mass production-wise property improvements and extends the practical applicability of the ZrO2/Al2O3/ZrO2 dielectric.  相似文献   

10.
GaN nanorods were synthesized by ammoniating Ga2O3/In2O3 thin films deposited on Si (111) with magnetron sputtering. X-ray diffraction, Scanning electronic microscope and high-resolution TEM results show that they are GaN single crystals, the sizes of which vary from 2 to 7 μm in length and 200 to 300 nm in diameter. In2O3 middle layer plays an important role in the GaN nanorod growth.  相似文献   

11.
Cu2ZnSnS4 films were grown on Si (100) by vacuum evaporation using elemental Cu, Sn, S and binary ZnS as sources. X-ray diffraction patterns of films grown at different substrate temperatures indicated that polycrystalline growth was suppressed and the orientational growths were relatively induced in a film grown at higher temperatures. Tetragonal structure of Cu2ZnSnS4 films was confirmed by studying RHEED patterns. The existence of c-axis ([001] direction) growth, two kinds of a-axis (〈100〉 direction) growth and four kinds of {112} twins which can be classified as two symmetrical pairs is proposed. Broad emissions at around 1.45 eV and 1.31 eV were observed in the photoluminescence spectrum measured at 13 K.  相似文献   

12.
The Nd2O3 modified ZrO2 was synthesized using two methods of co-precipitation (Nd-ZrO2) and wet impregnation (Nd/ZrO2). The surface and bulk crystalline phases of Nd2O3 modified ZrO2 were investigated by using UV Raman spectroscopy, visible Raman spectroscopy, and X-ray diffraction (XRD). It is observed that the tetragonal phase in the surface region of Nd-ZrO2 was not effectively stabilized by Nd2O3, as Nd2O3 is mainly present in the bulk of Nd-ZrO2. However, in Nd/ZrO2, it is found that with the impregnation of 0.5 mol% Nd2O3 on ZrO2, the surface tetragonal phase of Nd/ZrO2 can be stabilized even after calcination at 700 °C. The UV Raman results indicate that a disordered structure, or intermediate structure, which is involved in the transition from the tetragonal to the cubic phase, is formed at the surface region of Nd/ZrO2. The formation of the aforementioned intermediate structure inhibits the phase transition from tetragonal to monoclinic in the surface region of Nd/ZrO2. Furthermore, it is observed that the mixed tetragonal and monoclinic phases in the surface region of ZrO2 which has been impregnated with Nd2O3 can also be stabilized after calcination at 700 °C. This work provides a simple method for controlling the surface phase of ZrO2 at high temperatures.  相似文献   

13.
We demonstrate the upconversion-photoluminescence spectra of Er3+, Yb3+ and Li+ ions doped ZrO2 nanocrystals. By introducing Li+, emission intensities of single green and single red band increase by a factor of 1.93 and 1.65, respectively. Powder X-ray diffraction data and decreased slopes of the excitation power dependences on upconverted emission intensities give evidences that Li+ ions can tailor the local structure of host lattice and improve energy transfer processes from Yb3+ to Er3+, respectively.  相似文献   

14.
The epitaxial growth process of β-FeSi2 on Si(100) surface under ultrahigh vacuum condition has been studied by low energy electron diffraction (LEED) and low energy ion scattering spectroscopy (LEIS). The LEED pattern of Si (100)-2×1 changes into amorphous structure with Fe deposition of about 10 Å at room temperature. With annealing at 540 °C, the LEED pattern shows 2×2 structure corresponding to the formation of the epitaxial β-FeSi2 (100) template layer. The α-scan in Li+-LEIS and X-ray diffraction (XRD) study strongly suggest that the topmost surface of the 2×2 structure is terminated by Si atoms. By XRD, it is shown that the β-FeSi2 develops with characteristic orientation even if iron reactant is deposited onto the template surface.  相似文献   

15.
The electrical characteristics of nonvolatile memory, which consists of an asymmetrical ZrO2/SiO2 (ZO) modified tunnel barrier, a high-k HfO2 trapping layer and an Al2O3 blocking layer, were investigated for the application of a tunnel barrier engineered nonvolatile memory at low process temperatures. The efficiency of the ZO modified tunnel barrier on the charge trap flash (CTF) memory cell was compared to a conventional single SiO2 tunnel barrier. The ZO tunnel barrier revealed field sensitivity larger than the single SiO2 tunnel barrier. The programming and erasing speeds as well as the retention and endurance characteristics of CTF memory were largely enhanced. Moreover, the forming gas annealing process in 2% diluted H2/N2 ambient improved the charging trapping property and tunneling sensitivity of the ZO modified tunnel barrier.  相似文献   

16.
We have demonstrated the structural and morphological changes of iridium oxide (IrO2) films by the thermal annealing process. We have characterized the samples by using the X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The Ir-related XRD peaks predominantly appeared after the thermal annealing at 750-1000 °C. SEM images revealed that the films became quite uneven in thickness by annealing at 750 °C, whereas island-like structures were found to agglomerate on substrate surfaces by annealing at 1000 °C. From EDX and XRD analysis, we suggested that the agglomerated structures mainly consisted of Ir phase.  相似文献   

17.
Hyesun Yoo 《Thin solid films》2010,518(22):6567-6572
We fabricated Cu2ZnSnS4 (CZTS) thin films through sulfurization of stacked metallic films. Three types of Cu-Zn-Sn metallic films, i.e., Cu-rich, Cu-correct and Cu-poor precursor films were sputtered onto Mo-coated glass. The sulfurization of stacked Cu-Zn-Sn alloy films was performed at a relatively high temperature, 570 °C, with S-powder evaporation. CZTS films from Cu-rich and Cu-correct precursors showed a Cu2  xS phase on the film surface, while CZTS films from Cu-poor precursors didn't show the Cu2  xS phase. However, all films didn't exhibit any extra secondary phase and exhibited good crystalline textures even with Cu-ratio differences in metallic precursor films. Fabricated CZTS films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and Raman scattering measurements. SEM cross-section images of CZTS films showed that Cu-poor CZTS films were grown with more smooth film surface compared with other types of CZTS films.  相似文献   

18.
Cu2SnSe3 thin films were prepared by single-step D.C. sputtering at 100-400 °C for 3 h using targets composed of Cu2Se and SnSe2 in three different ratios of 2/1 (target A), 1.8/1 (target B), and 1.6/1 (target C). The advantages of self-synthesized SnSe2 instead of commercially available SnSe for depositing Cu2SnSe3 thin films were demonstrated. Effects of target composition and substrate temperature on the properties of Cu2SnSe3 thin films were investigated. Structure, surface morphology, composition, electrical and optical properties at different process conditions were measured. The 400 °C-sputtered films obtained from target B display with direct band gap of 0.76 eV, electrical resistivity of 0.12 Ω cm, absorption coefficient of 104-105 cm− 1, carrier concentration of ∼ 1.8 × 1019 cm− 3, and electrical mobility of 2.9 cm2/V s.  相似文献   

19.
The investigation of Al2O3 etch characteristics in the BCl3/Ar inductively coupled plasma was carried out in terms of effects of input process parameters (gas pressure, input power, bias power) on etch rate and etch selectivity over poly-Si and photoresist. It was found that, with the changes in gas pressure and input power, the Al2O3 etch rate follows the behavior of ion current density while the process rate is noticeably contributed by the chemical etch pathway. The influence of input power on the etch threshold may be connected with the concurrence of chemical and physical etch pathways in ion-assisted chemical reaction.  相似文献   

20.
Zirconia nanocrystals doped with europium ions were developed envisaging optical applications. The nanostructures were produced using zirconyl nitrate (ZrO(NO3)2·H2O) and europium nitrate (Eu(NO3)3·5H2O) as cation precursors, and urea (C2H5NO2) as the fuel, by the combustion synthesis process. The lanthanide-doped nanostructures were characterized by X-ray diffraction, transmission electron microscopy, Raman spectroscopy and photoluminescence. X-ray diffraction revealed the presence of tetragonal and monoclinic crystalline ZrO2 phases. The latter was found to be a minority phase as identified by Raman and corroborated by the observed europium luminescence when compared to the intraionic emission in crystalline tetragonal fibres grown by the laser floating zone technique. Bright red europium luminescence is observed at room temperature when the combustion synthesized zirconia powders are excited with ultraviolet radiation. The spectroscopic properties of the europium ions in the powders are ascertained by comparing combined excitation–emission measurements with those from crystalline fibres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号