首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cl2/Ar based inductively coupled plasma (ICP) etching of GaN is investigated using photoresist mask in a consequential restricted domain of pressure < 1.2 Pa and radio frequency (RF) sample power < 100 W, for selective mesa etching. The etch characteristics and root-mean-square (rms) surface roughness are studied as a function of process parameters viz. process pressure, Cl2 percentage in total flow rate ratio, and RF sample power at a constant ICP power, to achieve moderate GaN etch rate with anisotropic profiles and smooth surface morphology. The etch rate and resultant surface roughness of etched surface increased with pressure mainly due to dominant reactant limited etch regime. The etch rate and surface roughness show strong dependence on RF sample power with the former increasing and the later decreasing with the applied RF sample power up to 80 W. The process etch yield variation with applied RF sample power is also reported. The studied etch parameters result in highly anisotropic mesa structures with Ga rich etched surface.  相似文献   

2.
We report a comparison of dry etching of polymethyl methacrylate (PMMA) and polycarbonate (PC) in O2 capacitively coupled plasma (CCP) and inductively coupled plasma (ICP). A diffusion pump was used as high vacuum pump in both cases. Experimental variables were process pressure (30-180 mTorr), CCP power (25-150 W) and ICP power (0-350 W). Gas flow rate was fixed at 5 sccm. An optimized process pressure range of 40-60 mTorr was found for the maximum etch rate of PMMA and PC in both CCP and ICP etch modes. ICP etching produced the highest etch rate of 0.9 μm/min for PMMA at 40 mTorr, 100 W CCP and 300 W ICP power, while 100 W CCP only plasma produced 0.46 μm/min for PMMA at the same condition. For polycarbonate, the highest etch rates were 0.45 and 0.27 μm/min, respectively. RMS surface roughnesses of PMMA and PC were about 2-3 nm after etching. Etch selectivity of PMMA over photoresist was 1-2 and that of PC was less than 1. When ICP power increased from 0 to 350 W, etch rates of PMMA and PC increased linearly from 0.47 to 1.18 μm/min and from 0.18 to 0.6 μm/min, while the negative self bias slightly reduced from 364 to 352 V. Increase of CCP power raised both self bias and PMMA etch rate. PMMA etch rates were about 3 times higher than those of PC at the same CCP conditions. SEM data showed that there was some undercutting of PMMA and PC after etching at 300 W ICP, 100 W CCP and 40 mTorr. The results also showed that the etched surface of PMMA was rough and that of PC was relatively smooth.  相似文献   

3.
The investigations of the influence of gas pressure and input power on the Cl2 plasma parameters in the inductively coupled plasma system were carried out. The investigations combined plasma diagnostics by Langmuir probe and plasma modeling using the self-consistent global model with Maxwellian approximation for electron energy distribution function. From the experiments, it was found that an increase of gas pressure in the range of 0.27-3.33 Pa at 400-700 W input power results in decreasing both electron temperature (3.3-2.0 eV) and density (6.6 × 1010 − 3.0 × 1010 cm− 3 for 400 W and 1.2 × 1011 − 6.4 × 1010 cm− 3 for 700 W). The model showed an outstanding agreement with the experiments and provided the data on densities and fluxes of active species. These data combined with the model of etch kinetics demonstrated the possibility of different etch rate behaviors depending on the input process parameters as well as on the properties of the etched surface.  相似文献   

4.
In this study, thin films of Ag deposited onto glass substrates were etched using inductively coupled fluorine-based plasmas. The effects of various process conditions on the Ag etch characteristics were evaluated to ascertain whether it would be possible to etch patterned Ag films with high etch rates and smooth sidewalls free of involatile etch products. It was found that involatile etch products remained on the substrate when films were etched in CF4-based gas mixtures possessing either O2 or N2 as an additive. However, when Ar was added to either NF3 or CF4, a residue-free etch was obtained provided the partial pressure of Ar was no less than 50%. It is proposed that the residue-free Ag etch mechanism involves the formation of silver fluoride, which is physically sputtered by Ar+ ions. A Ag etch rate of 160 nm/min with a Ag to photoresist etch selectivity exceeding 1.1 was achieved with an inductive power of 1500 W, a d.c. bias voltage of −180 V and a chamber pressure of 0.8 Pa with 50-50 CF4/Ar partial pressures obtained with 60 sccm CF4/60 sccm Ar flows. In addition, these conditions produced smooth Ag sidewall etch profiles.  相似文献   

5.
Etching characteristics and the mechanism of HfO2 thin films in Cl2/Ar inductively-coupled plasma were investigated. The etch rate of HfO2 was measured as a function of the Cl2/Ar mixing ratio in the range of 0 to 100% Ar at a fixed gas pressure (6 mTorr), input power (700 W), and bias power (300 W). We found that an increase in the Ar mixing ratio resulted in a monotonic decrease in the HfO2 etch rate in the range of 10.3 to 0.7 nm/min while the etch rate of the photoresist increased from 152.1 to 375.0 nm/min for 0 to 100% Ar. To examine the etching mechanism of HfO2 films, we combined plasma diagnostics using Langmuir probes and quadrupole mass spectrometry with global (zero-dimensional) plasma modeling. We found that the HfO2 etching process was not controlled by ion-surface interaction kinetics and formally corresponds to the reaction rate-limited etch regime.  相似文献   

6.
Dry etching of GaAs was investigated in BCl3, BCl3/N2 and BCl3/Ar discharges with a mechanical pump-based capacitively coupled plasma system. Etched GaAs samples were characterized using scanning electron microscopy and surface profilometry. Optical emission spectroscopy was used to monitor the BCl3-based plasma during etching. Pure BCl3 plasma was found to be suitable for GaAs etching at > 100 mTorr while producing a clean and smooth surface and vertical sidewall. Adding N2 or Ar to the BCl3 helped increase the etch rates of GaAs. For example, the GaAs etch rate was doubled with 20% N2 composition in the BCl3/N2 plasma compared to the pure BCl3 discharge at 150 W CCP power and 150 mTorr chamber pressure. The GaAs etch rate was ∼ 0.21 µm/min in the 20 sccm BCl3 plasma. The BCl3/Ar plasma also increased etch rates of GaAs with 20% of Ar in the discharge. However, the surface morphology of GaAs was strongly roughened with high percentage (> 30%) of N2 and Ar in the BCl3/N2 and BCl3/Ar plasma, respectively. Optical emission spectra showed that there was a broad BCl3-related molecular peak at 450-700 nm wavelength in the pure BCl3 plasma. When more than 50% N2 was added to the BCl3 plasma, an atomic N peak (367.05 nm) and molecular N2 peaks (550-800 nm) were detected. Etch selectivity of GaAs to photoresist decreased with the increase of % N2 and Ar in the BCl3-based plasma.  相似文献   

7.
S.D. Park 《Thin solid films》2007,515(12):5045-5048
In this study, the effect of BCl3/C4F8 gas mixture on the ZrOx etch rates and the etch selectivities of ZrOx/Si were investigated and its etch mechanism was studied. The increase of C4F8 in BCl3/C4F8 decreased the silicon etch rate significantly and finally deposition instead of etching occurred by mixing C4F8 more than 3%. In the case of ZrOx, the etch rate remained similar until 4% of C4F8 was mixed, however, the further increase of C4F8 percentage finally decreased the ZrOx etch rate and deposition instead of etching occurred by mixing more than 6%. Therefore, by mixing 3-4% of C4F8 to BCl3, infinite etch selectivity of ZrOx/Si could be obtained while maintaining the similar ZrOx etch rate. The differences in the etch behaviors of ZrOx and Si were related to the different thickness of C-F polymer formed on the surfaces. The thickness of the C-F polymer on the ZrOx surface was smaller due to the removal of carbon incident on the surface by forming COx with oxygen in ZrOx. Using 12 mTorr BCl3/C4F8 (4%), 700 W of rf power, and − 80 V of dc bias voltage, the ZrOx etch rate of about 535 Å/min could be obtained with infinite etch selectivity to Si.  相似文献   

8.
Xue-Yang 《Thin solid films》2010,518(22):6441-6445
In this study, the etching characteristics of ALD deposited Al2O3 thin film in a BCl3/N2 plasma were investigated. The experiments were performed by comparing the etch rates and the selectivity of Al2O3 over SiO2 as functions of the input plasma parameters, such as the gas mixing ratio, the DC-bias voltage, the RF power, and the process pressure. The maximum etch rate was obtained at 155.8 nm/min under a 15 mTorr process pressure, 700 W of RF power, and a BCl3 (6 sccm)/N2 (14 sccm) plasma. The highest etch selectivity was 1.9. We used X-ray photoelectron spectroscopy (XPS) to investigate the chemical reactions on the etched surface. Auger electron spectroscopy (AES) was used for the elemental analysis of the etched surfaces.  相似文献   

9.
S.H. Mohamed  S. Venkataraj 《Vacuum》2007,81(5):636-643
Thin films of MoO3 were prepared on quartz and Si (1 0 0) substrates by reactive dc magnetron sputtering of a Mo target in an oxygen and argon atmosphere. The structural and optical changes induced in the films due to post-growth annealing have been systematically studied by Rutherford backscattering (RBS), X-ray diffraction (XRD), X-ray reflectivity (XRR) and by optical methods. RBS studies reveal no change in composition of the films upon annealing at high temperatures. Grazing angle XRD studies show that the as-deposited films are amorphous and crystallize to β-MoO3 phase with small contribution of α-MoO3 upon annealing at 300 °C. The film prepared at 0.40 Pa transforms to α-MoO3 upon annealing at 650 °C, while the film deposited at 0.19 Pa still has some β-MoO3 phase contribution. XRR measurements reveal that the film thickness decreases upon annealing with simultaneous increase of film density. The surface roughness of the films strongly increases after crystallization. The contraction of the film deposited at 0.40 Pa is much greater than the contraction of the film prepared at 0.19 Pa. The mass variation of the film deposited at 0.19 Pa and that deposited at 0.40 Pa are completely different. The optical properties of MoO3 films deposited at 0.19 and 0.40 Pa are changed strongly by annealing.  相似文献   

10.
P.K. Song  Y. Irie 《Thin solid films》2006,496(1):121-125
TiO2 films with thicknesses of 400-460 nm were deposited on the unheated non-alkali glass by radio frequency (rf) reactive magnetron sputtering using a Ti metal target. Depositions were carried out using a 3-in. 1000 G magnetron cathode with various rf substrate bias voltages (Vsb, dc component of self bias) of 10-80 V under total gas pressure of 1.0 or 3.0 Pa. The oxygen flow ratio [O2/(O2 + Ar)] and rf sputtering power were kept constant at 60% and 200 W, respectively. Photocatalytic activity on photoinduced oxidative decomposition of acetaldehyde (CH3CHO) of the TiO2 films showed a clear tendency to decrease with the increase in the Vsb during the deposition. Most of the films consisted of the mixture of anatase and rutile polycrystalline portions. It was confirmed that the rutile phase content increased and anatase phase content decreased markedly with increasing Vsb, where the crystallinity of anatase phase was much higher than that of rutile phase.  相似文献   

11.
Using unbalanced radio-frequency (RF) magnetron sputtering crystalline rutile films were synthesised on glass substrates at (combined Ar and O2) pressures of 0.4 Pa or less, at RF powers of 500 and 600 W with substrate to magnetron distances of 40 mm or longer. Anatase films were deposited at the greater pressure of 1.2 Pa (substrate to magnetron distance of 40 mm) or shorter substrate to magnetron distance of 20 mm (at 0.4 Pa). A mixture of anatase and rutile was formed at 0.5 Pa with all other conditions being as for those required for rutile or the power was reduced along with the substrate to magnetron distance (500 W and 20 mm). The crystallite sizes of rutile obtained were 1 - 3 nm. It is proposed that the greater the energy imparted to the substrate surface by the impinging positive species the greater the activation energy to crystalline phase formation that can be overcome. Hence the formation of rutile over anatase is favoured at greater power, longer magnetron to substrate distances and decreased pressure. Moreover, not only is it possible to control the phase of TiO2 formed it appears to be possible to control the degree of oxygen non-stoichiometry in the rutile films formed. Smaller O2 partial pressures, shorter substrate to magnetron distances and greater RF power are believed to produce an environment of reduced reaction of sputtered Ti species with O2 and to result in the formation of non-stoichiometric rutile structures resulting in increased band gap energies and decreased refractive indices.  相似文献   

12.
Using a generalized regression neural network (GRNN), plasma etching of oxynitride thin films was modeled. The etch process was characterized by means of a statistical experiment. A genetic algorithm was employed to improve prediction performance by optimizing multiparameterized training factors. Compared to a conventional GRNN model, the constructed etch rate model demonstrated an improvement of about 60% in the prediction performance. 3-D plots were generated to qualitatively interpret etch mechanisms while validating the predictions with experimental data. In separating physical and chemical effects, both dc bias and profile angle variations were effectively utilized. The source power affected significantly the etch rate irrespective of changes in the bias power or C2F6 flow rate. For pressure variations, the etch rate was estimated to be dominated by chemical etching. The complex effect of C2F6 flow rate could be explained by dominant chemical etching or polymer deposition.  相似文献   

13.
The effects of sputtering pressure and power on structural and optical-electrical properties of Al-doped ZnO films were systemically investigated at substrate temperature of room temperature and H2/(Ar + H2) flow ratio of 5%. The results show that carrier concentration and mobility of the films show nonmonotone change due to the evolution of microstructure and lattice defect of the films caused by introduction of H2 with increasing sputtering pressure and power. The transmittance of the films is also found to be related to the introduction of H2 in addition to usually considered surface roughness and crystallinity. Finally, optimized sputtering pressure and power are 0.8 Pa and 100 W, respectively, and obtained minimum resistivity and highest transmittance are 1.43 × 10− 3 Ω·cm and 90.5%, respectively. In addition, it is found that Eg of the films is mainly controlled by the carrier concentration, but crystallite size and stress should also be considered for the films deposited at different powers.  相似文献   

14.
We investigated the etch characteristics and mechanisms of Ga-doped ZnO (Ga-ZnO) thin films in HBr/X (X = Ar, He, N2, O2) inductively-coupled plasmas. The etch rates of Ga-ZnO thin films were measured as a function of the additive gas fraction in the range of 0-100% for Ar, He, N2, and O2 at a fixed gas pressure (6 mTorr), input power (700 W), bias power (200 W), and total gas flow rate (40 sccm). The plasma chemistry was analyzed using a combination of the global (zero-dimensional) plasma model and Langmuir probe diagnostics. By comparing the behavior of the etch rate and fluxes of plasma active species, we found that the Ga-ZnO etch process was not limited by ion-surface interaction kinetics and appeared in the reaction rate-limited etch regime. In the HBr/O2 plasma, the etch kinetics were probably influenced by oxidation of the etched surface.  相似文献   

15.
Evolution of surface of sputter-deposited amorphous Si3N4 films growth on Si (100) substrates was investigated using atomic force microscopy (AFM). The scaling behaviors of the AFM topographical profiles were analyzed using the one-dimensional power spectral density. The results of root-mean-square surface height variation showed that there is a power law relationship between the surface roughness and deposition time. It is interesting to note that the growth exponent can be divided into one region and two regions, respectively, when Si3N4 films are deposited at different working pressures. A very low growth exponent of β = 0.07 ± 0.01 was found when Si3N4 films were deposited at a working pressure of 1.6 × 10− 1 Pa. However, the growth exponent β can be divided into two regions, which is β1 = 0.09 ± 0.01, β2 = 0.24 ± 0.03 and β1 = 0.09 ± 0.01, β2 = 0.33 ± 0.04, when the films were deposited at a working pressure of 2.1 × 10− 1 Pa and 2.7 × 10− 1 Pa, respectively. The mechanisms of anomalous dynamic scaling exponents of Si3N4 films deposited at different working pressures were discussed.  相似文献   

16.
Alumina (Al2O3) thin films were sputter deposited over well-cleaned glass and Si < 100 > substrates by DC reactive magnetron sputtering under various oxygen gas pressures and sputtering powers. The composition of the films was analyzed by X-ray photoelectron spectroscopy and an optimal O/Al atomic ratio of 1.59 was obtained at a reactive gas pressure of 0.03 Pa and sputtering power of 70 W. X-ray diffraction results revealed that the films were amorphous until 550 °C. The surface morphology of the films was studied using scanning electron microscopy and the as-deposited films were found to be smooth. The topography of the as-deposited and annealed films was analyzed by atomic force microscopy and a progressive increase in the rms roughness of the films from 3.2 nm to 4.53 nm was also observed with increase in the annealing temperature. Al-Al2O3-Al thin film capacitors were then fabricated on glass substrates to study the effect of temperature and frequency on the dielectric property of the films. Temperature coefficient of capacitance, AC conductivity and activation energy were determined and the results are discussed.  相似文献   

17.
A density of neutral hydrogen atoms was systematically measured in the MESOX solar plasma reactor at different MW powers and flow rates. The H-atom density was measured by a gold fibre optics catalytic probe. The H-atom density was in general increasing with increasing MW power. At a pressure of 40 Pa and a power of 500 W it was about 3.5 × 1021 m−3 and at a power of 1000 W it was about 4.1 × 1021 m−3. A degree of dissociation of hydrogen molecules was between 3% and 20% depending on pressure and power. A maximum degree of dissociation was obtained at a pressure of 40 Pa and 1000 W, while the lowest one at 130 Pa and 500 W.  相似文献   

18.
The influence of substrate temperature and ambient gas pressure-composition on the characteristics of WOx films synthesized by radio-frequency assisted pulsed laser deposition (RF-PLD) are studied with the aim to obtain nanostructured films with large surface area that appear promising for gas sensing applications. A tungsten target was ablated both in chemically reactive molecular oxygen at 5 Pa and in a mixed oxygen-helium atmosphere at 700 Pa. Corning glass was used as the substrate, at 473, 673 and 873 K. Other deposition parameters such as laser fluence (4.5 J/cm2), laser wavelength (355 nm), radio-frequency power (150 W), and target to substrate distance (4 cm) were kept fixed. The sensitivity on the deposition parameters of roughness, morphology, nanostructure and bond coordination of the deposited films were analysed by atomic force microscopy, scanning electron microscopy, transmission electron microscopy and micro-Raman spectroscopy. The role of the investigated process parameters to nanoparticle formation and to the development of an extended nanostructure is discussed.  相似文献   

19.
Optical loss is a crucial quality for the application of polymer waveguide devices. The optimized oxygen inductively coupled plasma etching conditions, including antenna power, bias power, chamber pressure, O2 flow rate and etching time for the fabrication of smooth vertical poly(methyl-methacrylate-glycidly-methacrylate) channel waveguide were systematically investigated. Atomic force microscopy and scanning electron microscopy were used to characterize the etch rate, surface roughness and vertical profiles. The increment of etch rate with the antenna power, bias power and O2 flow rate was observed. Bias power and chamber pressure were found to be the main factor affecting the interface roughness. The vertical profiles were proved to be closely related to antenna power, bias power and O2 flow rate. Surface roughness increment was observed when the etching time increased.  相似文献   

20.
Effects of substrate bias voltage and target sputtering power on the structural and tribological properties of carbon nitride (CNx) coatings are investigated. CNx coatings are fabricated by a hybrid coating process with the combination of radio frequency plasma enhanced chemical vapor deposition (RF PECVD) and DC magnetron sputtering at various substrate bias voltage and target sputtering power in the order of −400 V 200 W, −400 V 100 W, −800 V 200 W, and −800 V 100 W. The deposition rate, N/C atomic ratio, and hardness of CNx coatings as well as friction coefficient of CNx coating sliding against AISI 52100 pin in N2 gas stream decrease, while the residual stress of CNx coatings increases with the increase of substrate bias voltage and the decrease of target sputtering power. The highest hardness measured under single stiffness mode of 15.0 GPa and lowest residual stress of 3.7 GPa of CNx coatings are obtained at −400 V 200 W, whereas the lowest friction coefficient of 0.12 of CNx coatings is achieved at −800 V 100 W. Raman and XPS analysis suggest that sp3 carbon bonding decreases and sp2 carbon bonding increases with the variations in substrate bias voltage and target sputtering power. Optical images and Raman characterization of worn surfaces confirm that the friction behavior of CNx coatings is controlled by the directly sliding between CNx coating and steel pin. Therefore, the reduction of friction coefficient is attributed to the decrease of sp3 carbon bonding in the CNx coating. It is concluded that substrate bias voltage and target sputtering power are effective parameters for tailoring the structural and tribological properties of CNx coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号