首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two mutants of the green fluorescent protein (GFP), RSGFP4 and GFPS65T, have been recently created which differ from the wildtype GFP of A. victoria in their excitation maxima. Here we show that human fibroblasts transfected with either of the two mutant GFP genes emit a green fluorescence that is 18-fold brighter than the cells transfected with the wildtype GFP gene. Retroviral vectors expressing the improved GFP gene were also constructed to determine their suitability for stable gene transduction into mammalian cells. The inclusion of the RSGFP4 gene in a retroviral vector did not reduce the viral titer and resulted in a fluorescent signal in viable transduced cells detectable by both fluorescence microscopy and fluorescence-activated cell sorter (FACS) analysis. Therefore, the improved mutant GFP provides a vital marker for monitoring gene transfer and expression in mammalian cells.  相似文献   

2.
We have studied the intracellular localization of glycogenin by fusing green fluorescent protein (GFP) to the N-terminus of rabbit muscle glycogenin and expressing the chimeric protein in C2C12, COS-1 and rat hepatic cells. The fusion protein showed a nuclear and cytosolic distribution and partially co-localized with actin in the cytosol. Disruption of the actin cytoskeleton with cytochalasin D led to a change in the pattern of green fluorescence, which coincided with that observed for the remaining non-depolymerized actin. The distribution of the single point mutant K324A was completely uniform and was not affected by this drug. These findings indicate that rabbit muscle glycogenin binds to actin through the heptapeptide 321DNIKKKL327, a common motif found in other actin-binding proteins, which is located at the C-terminal end of this protein, and suggest that the actin cytoskeleton plays an important role in glycogen metabolism.  相似文献   

3.
The GABAA receptor is a ligand-gated chloride channel belonging to the superfamily of ligand-gated ion channels of which the nicotinic acetylcholine (nACh) receptor is prototypic. In the central nervous system the GABAA receptor mediates fast neuronal inhibition. To facilitate the study of this receptor, a GABAA receptor-green fluorescent protein (GABAAR-GFP) chimera was constructed by fusing green fluorescent protein (GFP) to the C-terminus region of the GABAA receptor alpha1 subunit. When expressed in Xenopus oocytes, this chimera responded in a manner indistinguishable from the wild-type GABAA receptor with respect to agonist potency, receptor desensitization, allosteric modulation, rectification, and ion selectivity of the channel. The addition of GFP to the GABAA receptor alpha1 subunit did not appear to alter the assembly or efficiency of expression of the GABAA receptor complex. The GABAAR-GFP chimera generated a strong fluorescent signal that was restricted to the animal pole of the oocyte plasma membrane. This signal was readily detectable using either epifluorescence or laser confocal microscopy. To confirm the extracellular location of the GFP portion of the chimera, non-permeabilized oocytes were immunolabeled with an anti-GFP antibody. Fluorescence microscopy showed that GFP was located extracellularly since it was accessible to the GFP antibody. These results confirm the predicted extracellular location of the C-terminus of the GABAA receptor alpha1 subunit and also demonstrate that GFP retains its fluorescent property when expressed extracellularly. The usefulness of the GABAAR-GFP chimera in receptor trafficking was investigated using non-hydrolyzable GTP analogues since GTP binding proteins participate in protein transport in oocytes. Microinjections of GTP-gamma-S but not GDP-beta-S reduced both GABA-gated chloride currents and cell surface GFP fluorescence in oocytes expressing the GABAAR-GFP chimera indicating that the chimera undergoes internalization upon stimulation of oocyte GTP-binding proteins. The results of the present study show that the GABAAR-GFP chimera is functionally similar to the wild-type GABAA receptor and can be used to study receptor trafficking in living cells. This is the first demonstration of a ligand-gated ion channel-GFP chimera for an ion channel belonging to this superfamily and also is the first example of the fusion of GFP to an extracellular domain of an integral membrane protein.  相似文献   

4.
Green fluorescent protein (GFP) and herpes simplex virus type-I thymidine kinase (TK) are commonly used markers in gene transfer studies. The latter gene has also proven to be an effective tool in cancer "suicide" gene therapy. To facilitate rapid and reliable selection of cells expressing TK, we constructed a plasmid expressing a TK-green fluorescent protein fusion gene (TK-GFP). In this fusion gene, the expression of each component is coupled to one another, permitting accurate determination of the percentage of cells expressing TK by detecting the green fluorescence produced by GFP. Transfection of the fusion plasmid to mammalian cells revealed that the construct is fully functional, making the cells both fluorescent and sensitive to ganciclovir.  相似文献   

5.
A chimera of the epidermal growth factor receptor (EGFR) and green fluorescent protein (GFP) has been engineered by fusing GFP to the carboxyl terminus of EGFR. Data are provided to demonstrate that the GFP moiety does not affect the expected functioning of EGFR. EGFR-GFP becomes phosphorylated at tyrosine residues in response to EGF and is capable of phosphorylating endogenous substrates and initiating signaling cascades. EGF-dependent association of the chimeric receptor with the clathrin adaptor protein AP-2, involved in endocytosis, and with Shc adaptor protein, which binds in close proximity to the fusion point, is not affected by the GFP moiety. Receptor down-regulation and internalization occur at rates similar to those in cells expressing wild-type EGFR. Western blot analysis reveals that lysosomal degradation of EGFR-GFP proceeds from the extracellular domain and that GFP is not preferentially cleaved. Time-dependent co-localization of EGFR-GFP and Texas Red-conjugated EGF in living cells using digital deconvolution microscopy demonstrates the trafficking of ligand-receptor complexes through the early and multivesicular endosomes followed by segregation of the ligand and receptor at the late stages of endocytosis. Time-lapse optical analysis of the early stages of endocytosis reveals localization of EGFR-GFP in the tubular-vesicular endosomal compartments. Rapid dynamics of membrane movement and fusion within these compartments were observed. This approach and the fidelity of the biochemical properties of the EGFR-GFP demonstrate that real-time visualization of trafficking and protein interactions of tyrosine kinase receptors in the presence or absence of the ligand are feasible.  相似文献   

6.
The introduction of several mutations resulted in the generation of improved mutants of the green fluorescent protein (GFP). A strong green (GFPsg25) and blue (BFPsg50) fluorescent protein, gave 50-fold-100-fold brighter fluorescence compared to wild-type GFP and BFP (Tyr66His), respectively, upon expression in mammalian cells. GFPsg25 and BFPsg50 have different excitation and emission maxima. This allows their use as an efficient dual-color tagging system and their independent detection in living cells.  相似文献   

7.
We have engineered a mutant version of the green fluorescent protein GFP (Cormack et al. Selected for bright fluorescence in E. coli. Gene 1996;173:33-38) for expression in the protozoan parasite Toxoplasma gondii. Although intact GFP was not expressed at any detectable level, GFP fusion proteins could be detected by fluorescence microscopy, flow cytometry (FACS), and immunoblotting. Both extracellular tachyzoites and T. gondii-infected host cells could readily be sorted by FACS, which should facilitate a variety of selection strategies. Several selectable markers were tested for their ability to produce stable green transgenic parasites. Fluorescence intensity was directly correlated with gene copy number and protein expression level. Weak selectable markers such as chloramphenicol acetyl transferase (CAT) driven by the SAG1 promoter, which yield multicopy insertions, are therefore most effective for selecting green fluorescent parasites-particularly when coupled to constructs which employ a strong promoter to drive GFP expression. Transformation vectors developed in the course of this work should be of general utility for the overexpression of heterologous transgenes in Toxoplasma. CAT-GFP fusion proteins were expressed in the parasite cytoplasm. GFP fusions to the P30 major surface antigen (linked on the same plasmid to a CAT selectable marker under control of various promoters) could be detected in dense granules within living cells, and were efficiently secreted into the parasitophorous vacuole. GFP fusions to the rhoptry protein ROP1 were targeted to rhoptries (specialized secretory organelles at the apical end of the parasite).  相似文献   

8.
BACKGROUND: Biologically compatible fluorescent protein probes, particularly the self-assembling green fluorescent protein (GFP) from the jellyfish Aequorea victoria, have revolutionized research in cell, molecular and developmental biology because they allow visualization of biochemical events in living cells. Additional fluorescent proteins that could be reconstituted in vivo while extending the useful wavelength range towards the orange and red regions of the light spectrum would increase the range of applications currently available with fluorescent protein probes. RESULTS: Intensely orange fluorescent adducts, which we designate phytofluors, are spontaneously formed upon incubation of recombinant plant phytochrome apoproteins with phycoerythrobilin, the linear tetrapyrrole precursor of the phycoerythrin chromophore. Phytofluors have large molar absorption coefficients, fluorescence quantum yields greater than 0.7, excellent photostability, stability over a wide range of pH, and can be reconstituted in living plant cells. CONCLUSIONS: The phytofluors constitute a new class of fluorophore that can potentially be produced upon bilin uptake by any living cell expressing an apophytochrome cDNA. Mutagenesis of the phytochrome apoprotein and/or alteration of the linear tetrapyrrole precursor by chemical synthesis are expected to afford new phytofluors with fluorescence excitation and emission spectra spanning the visible to near-infrared light spectrum.  相似文献   

9.
The Golgi apparatus of HeLa cells was fluorescently tagged with a green fluorescent protein (GFP), localized by attachment to the NH2-terminal retention signal of N-acetylglucosaminyltransferase I (NAGT I). The location was confirmed by immunogold and immunofluorescence microscopy using a variety of Golgi markers. The behavior of the fluorescent Golgi marker was observed in fixed and living mitotic cells using confocal microscopy. By metaphase, cells contained a constant number of Golgi fragments dispersed throughout the cytoplasm. Conventional and cryoimmunoelectron microscopy showed that the NAGT I-GFP chimera (NAGFP)-positive fragments were tubulo-vesicular mitotic Golgi clusters. Mitotic conversion of Golgi stacks into mitotic clusters had surprisingly little effect on the polarity of Golgi membrane markers at the level of fluorescence microscopy. In living cells, there was little self-directed movement of the clusters in the period from metaphase to early telophase. In late telophase, the Golgi ribbon began to be reformed by a dynamic process of congregation and tubulation of the newly inherited Golgi fragments. The accuracy of partitioning the NAGFP-tagged Golgi was found to exceed that expected for a stochastic partitioning process. The results provide direct evidence for mitotic clusters as the unit of partitioning and suggest that precise regulation of the number, position, and compartmentation of mitotic membranes is a critical feature for the ordered inheritance of the Golgi apparatus.  相似文献   

10.
Tumor progression is often characterized by the cumulative loss of crucial cell cycle control genes and the concomitant loss of genome stability. Progressed tumors are often resistant to conventional therapies. Gene-transfer of key growth-regulatory genes, such as the p53 gene, is one potential approach to treating advanced tumors. To this end, we have produced high-titer retroviruses, based on the pCL vector system, which encode a chimeric protein consisting of human wild-type p53 and the green fluorescent protein (wtp53GFP). The fluorescent wtp53GFP protein and the wild-type p53 protein are recognized equally by several monoclonal p53-specific antibodies, have similar half-lives and function comparably in transactivating a p53-responsive element as well as in suppressing the growth of tumor cells. Additionally, due to its fluorescent nature, wtp53GFP facilitates the direct identification of cells expressing the p53 fusion protein. Combining the features of the pCL retroviral production system with the highly visible green fluorescent protein provides a potent tool for the delivery of p53 into cells and the subsequent detection of the protein, both in vitro and in vivo.  相似文献   

11.
The green fluorescent protein (GFP) gene was expressed on a plasmid in B. henselae, and GFP-expressing bacteria were visualized by fluorescence microscopy. HEp-2 cells infected with GFP-expressing bacteria were separated from uninfected cells with a fluorescence activated cell sorter. Promoter fusions of B. henselae chromosomal DNA to gfp were examined by flow cytometry, and a B. henselae groEL promoter fusion which induced expression at 37 degreesC was isolated.  相似文献   

12.
We describe the quantitative monitoring of TATA-binding protein (TBP) localization and expression in living Saccharomyces cerevisiae cells. We replaced the endogenous TBP with a green fluorescent protein (GFP) x TBP fusion, which was imaged quantitatively by laser scanning confocal microscopy (LSCM). When GFP x TBP expression was altered by using various promoters, the levels measured by LSCM correlated well with the levels determined by immunoblot of whole cell extract protein. These results show that GFP x TBP imaging not only offers a method of measurement equivalent to a more conventional technique but also provides real-time quantitation in living cells and subcellular localization information. Time-lapse confocal imaging of GFP x TBP in mitotic yeast cells revealed that it remains localized to the nucleus and displays an asymmetric distribution (1:0.7) between mother and daughter cells. Based on this and data from a mutant which underexpresses GFP x TBP, we suggest that intracellular levels of TBP are near rate-limiting for growth and viability.  相似文献   

13.
The study of G protein-coupled receptor signal transduction and behavior in living cells is technically difficult because of a lack of useful biological reagents. We show here that a fully functional alphalb-adrenoceptor tagged with the green fluorescent protein (alphalbAR/GFP) can be used to determine the molecular mechanism of intemalization of alphalbAR/ GFP in living cells. In mouse alphaT3 cells, alpha1bAR/GFP demonstrates strong, diffuse fluorescence along the plasma membrane when observed by confocal laser scanning microscope. The fluorescent receptor binds agonist and antagonist and stimulates phosphatidylinositol/Ca2+ signaling in a similar fashion to the wild receptor. In addition, alpha1bAR/ GFP can be internalized within minutes when exposed to agonist, and the subcellular redistribution of this receptor can be determined by measurement of endogenous fluorescence. The phospholipase C inhibitor U73,122, the protein kinase C activator PMA, and inhibitor staurosporine, and the Ca2+-ATPase inhibitor thapsigargin were used to examine the mechanism of agonist-promoted alphalbAR/GFP redistribution. Agonist-promoted internalization of alphalbAR/GFP was closely linked to phospholipase C activation and was dependent on protein kinase C activation, but was independent of the increase in intracellular free Ca2+ concentration. This study demonstrated that real-time optical monitoring of the subcellular localization of alphalbAR (as well as other G protein-coupled receptors) in living cells is feasible, and that this may provide a valuable system for further study of the biochemical mechanism(s) of agonist-induced receptor endocytosis.  相似文献   

14.
The herpes simplex virus type 1 (HSV-1) UL35 open reading frame (ORF) encodes a 12-kDa capsid protein designated VP26. VP26 is located on the outer surface of the capsid specifically on the tips of the hexons that constitute the capsid shell. The bioluminescent jellyfish (Aequorea victoria) green fluorescent protein (GFP) was fused in frame with the UL35 ORF to generate a VP26-GFP fusion protein. This fusion protein was fluorescent and localized to distinct regions within the nuclei of transfected cells following infection with wild-type virus. The VP26-GFP marker was introduced into the HSV-1 (KOS) genome resulting in recombinant plaques that were fluorescent. A virus, designated K26GFP, was isolated and purified and was shown to grow as well as the wild-type virus in cell culture. An analysis of the intranuclear capsids formed in K26GFP-infected cells revealed that the fusion protein was incorporated into A, B, and C capsids. Furthermore, the fusion protein incorporated into the virion particle was fluorescent as judged by fluorescence-activated cell sorter (FACS) analysis of infected cells in the absence of de novo protein synthesis. Cells infected with K26GFP exhibited a punctate nuclear fluorescence at early times in the replication cycle. At later times during infection a generalized cytoplasmic and nuclear fluorescence, including fluorescence at the cell membranes, was observed, confirming visually that the fusion protein was incorporated into intranuclear capsids and mature virions.  相似文献   

15.
cDNAs for green fluorescent protein (GFP) and for a GFP fusion protein containing the presequence of human ornithine transcarbamylase (pOTC-GFP) were transfected into cultured human fibroblasts. GFP cDNA gave diffuse fluorescence throughout the cytoplasm and the nucleus, whereas pOTC-GFP cDNA gave mitochondria-associated fluorescence. Fluorescent mitochondrial structures could be classified into five patterns: thread-like mitochondria, fine thread-like ones, rod-like ones, granular ones, and granular ones with weak cytosolic fluorescence. pOTC-GFP mutants resulted in a loss of mitochondrial fluorescence and an appearance of weak fluorescence throughout the cytoplasm. pOTC-GFP cDNA was transfected into fibroblasts from patients with various mitochondrial diseases. Higher ratios of fibroblasts with granular mitochondria and those with fine thread-like ones were observed in a patient with Reye's syndrome and a patient with Kearns-Sayre syndrome. Weak cytosolic fluorescence was sometimes observed in fibroblasts from these patients. This method will be useful to analyze mitochondrial structural alterations and disorders of mitochondrial protein import.  相似文献   

16.
The mechanism by which cAMP stimulates cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride (Cl-) secretion is cell type-specific. By using Madin-Darby canine kidney (MDCK) type I epithelial cells as a model, we tested the hypothesis that cAMP stimulates Cl- secretion by stimulating CFTR Cl- channel trafficking from an intracellular pool to the apical plasma membrane. To this end, we generated a green fluorescent protein (GFP)-CFTR expression vector in which GFP was linked to the N terminus of CFTR. GFP did not alter CFTR function in whole cell patch-clamp or planar lipid bilayer experiments. In stably transfected MDCK type I cells, GFP-CFTR localization was substratum-dependent. In cells grown on glass coverslips, GFP-CFTR was polarized to the basolateral membrane, whereas in cells grown on permeable supports, GFP-CFTR was polarized to the apical membrane. Quantitative confocal fluorescence microscopy and surface biotinylation experiments demonstrated that cAMP did not stimulate detectable GFP-CFTR translocation from an intracellular pool to the apical membrane or regulate GFP-CFTR endocytosis. Disruption of the microtubular cytoskeleton with colchicine did not affect cAMP-stimulated Cl- secretion or GFP-CFTR expression in the apical membrane. We conclude that cAMP stimulates CFTR-mediated Cl- secretion in MDCK type I cells by activating channels resident in the apical plasma membrane.  相似文献   

17.
In order to study how a cell mass undergoes a transition from one symmetry to another in the slime mold Polysphondylium, we developed a genetic screen in which mutant phenotype and gene expression can easily be visualized in the living organism. The screen combines restriction enzyme-mediated integration (REMI) [1,2] and green fluorescent protein (GFP) [3] expression. In REMI, a restriction enzyme is electroporated along with linearized vector into cells, thus determining the site of plasmid insertion and often increasing the integration frequency. A set of transforming plasmids carrying the GFP coding sequence in three reading frames was used for transformation. The plasmids were constructed so that GFP could be expressed only under control of a host promoter. Living transformants expressing GFP spatially and temporally could be rapidly identified in a very large background of non-expressing cells and fruiting bodies. The phenotypes of representative mutants range from cells that cannot aggregate and initiate cell-cell interactions, through mutant fruiting bodies, to apparently wild-type fruiting bodies expressing GFP in all or a subpopulation of cells. The ability to screen mutant living cells and tissues for GFP expression is rapid and effective and likely to have application in many transformable systems where screening by gene and promoter trapping is essential for understanding temporal and spatial gene regulation.  相似文献   

18.
It was found that the absorbance and fluorescence of green fluorescent protein (GFP) mutants are strongly pH dependent in aqueous solutions and intracellular compartments in living cells. pH titrations of purified recombinant GFP mutants indicated >10-fold reversible changes in absorbance and fluorescence with pKa values of 6.0 (GFP-F64L/S65T), 5.9 (S65T), 6.1 (Y66H), and 4.8 (T203I) with apparent Hill coefficients of 0.7 for Y66H and approximately 1 for the other proteins. For GFP-S65T in aqueous solution in the pH range 5-8, the fluorescence spectral shape, lifetime (2.8 ns), and circular dichroic spectra were pH independent, and fluorescence responded reversibly to a pH change in <1 ms. At lower pH, the fluorescence response was slowed and not completely reversed. These findings suggest that GFP pH sensitivity involves simple protonation events at a pH of >5, but both protonation and conformational changes at lower pH. To evaluate GFP as an intracellular pH indicator, CHO and LLC-PK1 cells were transfected with cDNAs that targeted GFP-F64L/S65T to cytoplasm, mitochondria, Golgi, and endoplasmic reticulum. Calibration procedures were developed to determine the pH dependence of intracellular GFP fluorescence utilizing ionophore combinations (nigericin and CCCP) or digitonin. The pH sensitivity of GFP-F64L/S65T in cytoplasm and organelles was similar to that of purified GFP-F64L/S65T in saline. NH4Cl pulse experiments indicated that intracellular GFP fluorescence responds very rapidly to a pH change. Applications of intracellular GFP were demonstrated, including cytoplasmic and organellar pH measurement, pH regulation, and response of mitochondrial pH to protonophores. The results establish the application of GFP as a targetable, noninvasive indicator of intracellular pH.  相似文献   

19.
Green fluorescent protein fused to human chromogranin B or neuropeptide Y was expressed in PC12 cells and caused bright, punctate fluorescence. The fluorescent points colocalized with the endogenous secretory granule marker dopamine beta-hydroxylase. Stimulation of live PC12 cells with elevated [K+], or of permeabilized PC12 cells with Ca2+, led to Ca2+-dependent loss of fluorescence from neurites. Ca2+ stimulated secretion of both fusion proteins equally well. In living cells, single fluorescent granules were imaged by evanescent-wave fluorescence microscopy. Granules were seen to migrate; to stop, as if trapped by plasmalemmal docking sites; and then to disappear abruptly, as if through exocytosis. Evidently, GFP fused to secreted peptides is a fluorescent marker for dense-core secretory granules and may be used for time-resolved microscopy of single granules.  相似文献   

20.
A method is described that allows simultaneous measurement of two spectrally distinguishable green fluorescent protein (GFP) mutants with a confocal microscope. In contrast to previously described methods, neither UV excitation nor repetition of scans is required. Therefore the method is well-suited to the long-time observation of living cells in three-dimensional microscopy and time series recording, as demonstrated with GFP-expressing Dictyostelium discoideum cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号