首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
纳米La_2O_3催化剂上低温甲烷氧化偶联和乙烷氧化脱氢   总被引:1,自引:0,他引:1  
采用沉淀法制备了纳米La2O3催化剂,并考察了该催化剂对甲烷氧化偶联和乙烷氧化脱氢反应的催化性能。实验结果表明,对于甲烷氧化偶联反应,在450℃、气态空速(GHSV)=7.5L/(g.h)、n(CH4)∶n(O2)=3.0的条件下,甲烷转化率和C2烃收率分别达到26.6%和10.8%,比商品化的La2O3催化剂的启动温度低100℃,具有较好的低温甲烷氧化偶联反应性能;对于乙烷氧化脱氢反应,在450℃、GHSV=10L/(g.h)、n(C2H6)∶n(O2)∶n(N2)=1∶1∶4的条件下,乙烷转化率和乙烯收率分别为49.1%和25.9%,明显优于商品化的La2O3催化剂。对纳米La2O3催化剂的表征结果显示,沉淀法制备的纳米La2O3催化剂颗粒较小(粒径30~50nm)、比表面积较大(12.0m2/g),具有较强的吸附O2能力,因此能在较低温度下活化甲烷和乙烷,具有较好的低温催化性能。  相似文献   

2.
吴洪达  贺德华 《石油化工》2007,36(4):334-339
用氨水共沉淀法制备了La2O3-ZrO2复合氧化物载体,用浸渍法制备了CuO/La2O3-ZrO2催化剂;用N2低温吸附-脱附和X射线衍射技术对试样进行了表征;考察了CuO/La2O3-ZrO2催化剂在乙醇水蒸气重整制氢反应中的活性。实验结果表明,La含量较低的CuO/La2O3-ZrO2催化剂为具有四方晶相结构的纳米晶粒,比表面积较大;CuO/La2O3-ZrO2催化剂在乙醇水蒸气重整制氢反应中表现出良好的催化活性,气相产物中H2含量较高;La2O3含量影响CuO/La2O3-ZrO2催化剂的活性。在反应温度773K、乙醇与水的摩尔比1∶6.33、乙醇水溶液进料量0.1mL/m in的条件下,采用n(Cu)∶n(La)∶n(Zr)=1∶0.5∶6.5、673K焙烧的CuO/La2O3-ZrO2为催化剂,乙醇转化率为94%,气相产物中H2的摩尔分数为69%、CO的摩尔分数小于0.5%。  相似文献   

3.
《精细石油化工》2017,(5):35-38
通过燃烧合成法,以硝酸铝和甘氨酸为原料,添加氧化钇和硝酸钡作为共同改性剂,成功制备了掺杂改性的γ-Al_2O_3粉体。通过X射线衍射分析得出,制备改性γ-Al_2O_3粉体的最佳工艺条件为:添加改性剂的量为n(Y)∶n(Ba)=3∶1,煅烧时间为4h,煅烧温度为1 000℃。将产物采用比表面积测定、扫描电镜以及红外光谱等手段进行表征。结果表明,制备出的改性γ-Al_2O_3粉体具有较高的热稳定性、表面积大、颗粒度小、表面酸性等特点,可作为催化剂载体使用,且克服了普通γ-Al_2O_3粉体高温相变导致失活的缺点。  相似文献   

4.
以硅胶、NaAlO2、NaOH、Zn(NO3)2和去离子H2O为原料,六亚甲基亚胺(HMI)为模板剂,采用静态水热晶化法对Zn-MWW结构分子筛的合成进行了研究.结果表明,在n(SiO2)∶n(Al2O3)∶n(Na2O)∶n(HMI)∶n(H2O)=25∶1∶1.63∶4.75∶375的MCM-22合成凝胶中引入Zn,生成了Zn-MCM-49,这与层间形成Si1-O1-Zn1结构有关.Zn-MCM-49的形貌和模板剂的脱附行为与MCM-49类似.  相似文献   

5.
以硝酸铝、甘氨酸为原料,采用燃烧合成法制备了γ-Al2O3粉体,利用XRD、SEM、TG-DTA等手段对所制备的γ-Al2O3粉体进行了表征,考察了反应溶液pH值、硝酸铝与甘氨酸配比、煅烧温度对纳米γ-Al2O3粉体粒径和纯度的影响。确定了制备γ-Al2O3粉体的最佳工艺条件:硝酸铝与甘氨酸物质的量配比为3:5,pH值为2,煅烧温度为750 ℃。  相似文献   

6.
李玮  黄丽丽  翟友存  张涛  邹克华 《石油化工》2014,43(11):1319-1325
以Cu-Mn负载量、n(Cu)∶n(Mn)、焙烧温度和焙烧时间为4因素3水平设计正交实验,对浸渍法制备Cu-Mn/Ti O2和Cu-Mn/γ-Al2O3催化剂的条件进行优化,并考察催化剂催化氧化甲醛的活性。采用XRD、N2等温吸附-脱附和SEM等方法对催化剂进行表征。实验结果表明,焙烧温度对催化剂的活性影响较大;与Cu-Mn/Ti O2催化剂相比,Cu-Mn/γ-Al2O3催化剂催化氧化甲醛的活性更高。Cu-Mn/γ-Al2O3催化剂的最佳制备条件为Cu-Mn负载量30%(w)、n(Cu)∶n(Mn)=1∶4、焙烧温度500℃、焙烧时间6 h,在此条件下制备的Cu-Mn/γ-Al2O3催化剂,Cu-Mn氧化物呈高分散状态,甲醛的去降除率可达98.14%。  相似文献   

7.
以Co(NO3)2·6H2O为钴源制备Co-SBA-15介孔分子筛,并用XRD、BET方法对Co-SBA-15结构进行表征.结果表明,负载钴的SBA-15具有介孔分子筛的结构特征.以质量分数为30%的H2O2为氧化剂,丙酮为溶剂,对Co-SBA-15催化氧化苯乙烯反应进行研究.在苯乙烯用量5 mL、n(H2O2)∶n(...  相似文献   

8.
单取代Keggin型磷钼酸催化氧化环己烯合成反-1,2-环己二醇   总被引:1,自引:0,他引:1  
以过渡金属离子(Fe3+,Co2+,Ni2+,Cu2+,Zn2+,V5+,Mn2+)取代的Keggin型磷钼酸为催化剂、30%(质量分数)的H2O2溶液为氧化剂,环己烯经催化氧化合成了反-1,2-环己二醇。考察了催化剂的种类和用量、反应温度、反应时间和H2O2用量对环己烯氧化反应的影响。实验结果表明,Fe取代的Keggin型磷钼酸(H6PMo11FeO40)是环己烯氧化制反-1,2-环己二醇的高效催化剂。适宜的反应条件为:环己烯10mmol、n(H6PMo11FeO40)∶n(环己烯)=0.020、乙腈3mL、n(H2O2)∶n(环己烯)=1.5、反应温度55℃、反应时间8h。在此条件下,环己烯的转化率为98%,反-1,2-环己二醇的选择性为97%。用核磁共振及气相色谱-质谱联用仪对产物进行表征,结果显示产物为反-1,2-环己二醇。  相似文献   

9.
ZnO-PbO催化剂上酯交换法合成碳酸二甲酯   总被引:12,自引:5,他引:7  
陈英  赵新强  王延吉 《石油化工》2005,34(2):105-110
采用共沉淀法制备了ZnO-PbO催化剂,并对该催化剂在碳酸丙烯酯(PC)与甲醇酯交换合成碳酸二甲酯(DMC)反应中的催化性能进行了研究。探讨了催化剂制备条件对ZnO-PbO催化剂性能的影响,得出最佳制备条件为:Pb(CH3COO)2.3H2O和Zn(NO3)2.6H2O为前体、m(Zn)∶m(Pb)=3.46、以n(NaOH)∶n(Na2CO3)=3∶1的混合溶液为沉淀剂、焙烧温度500℃。优化了ZnO-PbO催化剂上PC与甲醇酯交换合成DMC反应的条件,即反应温度110℃、反应时间2h、n(CH3OH)∶n(PC)=8.4、催化剂占体系的质量分数为3.0%。在此条件下,PC转化率为63.8%,DMC选择性为97.8%,产率为62.4%。此外还考察了催化剂重复使用的效果,并对其失活原因进行了分析。  相似文献   

10.
在流化催化裂化(FCC)汽油中加入磷钨杂多酸季铵盐Q3[PO4(WO3)4](Q=[C16H33NMe3]++[C18H37NMe3]+)/H2O2实现了液-液高效催化氧化降烯烃.研究结果表明:在H2O2用量2.5 mL、反应时间1h、反应温度60℃、m(汽油)∶m(催化剂)=40∶1、pH值3.3的条件下,FCC汽油...  相似文献   

11.
在不同条件下对碱式碳酸锌进行焙烧活化,得到活化碱式碳酸锌(AZCH)催化剂,将其用于尿素与1,2-丙二醇(PG)合成碳酸丙烯酯(PC)的反应;考察了活化条件对催化剂活性的影响,并对合成PC的反应条件进行了优化。实验结果表明,在焙烧温度220℃、焙烧时间2 h条件下活化的AZCH催化剂活性最高;优化的反应条件为:反应温度170℃、反应时间2 h、n(PG)∶n(尿素)=2.50、催化剂用量为原料质量的1.00%、真空度0.04 MPa,在此条件下,PC收率达到94.5%。XRD表征结果显示,AZCH催化剂中存在ZnO和Zn4CO3(OH)6.H2O两种晶相,其中ZnO为主活性组分,两种晶相的协同作用促进了催化剂活性的提高。  相似文献   

12.
实验将堇青石载体浸渍于TS-1分子筛母液中,以原位水热法合成了TS-1/堇青石整体催化剂,对其结构进行了表征,并将其用于苯羟基化合成苯酚的反应中。结果表明:在n(TEOS)∶n(TBOT)∶n(TPAOH)∶n(H2O)=1∶0.025∶0.25∶50、除醇温度80℃、晶化温度170℃、晶化时间110h、焙烧温度550℃、焙烧时间6h条件下,可得到催化性能较好的催化剂。在甲醇-水两元混合体系中,在n(水)∶n(甲醇)=0.78、反应时间10h、n(过氧化氢)∶n(苯)=4.76∶1、反应温度为60℃条件下,苯酚收率可达8.43%。  相似文献   

13.
利用硫酸钡重量法对SO42-/TiO2-La2O3固体超强酸催化剂中的硫含量进行了分析。结果表明,随焙烧温度的升高,SO42-/TiO2-La2O3催化剂存在一个SO42-的快速流失温度区,并与晶相转变温度相对应。此外,原料配比n(La3+)/n(Ti4+)、硫酸浸溃浓度、硫酸浸溃时间和焙烧时间等制备条件对SO42-/TiO2-La2O3催化剂中的硫含量都存在较大的影响。SO42-/TiO2-LaO3催化剂的适宜制备条件为:原料配比n(La3+)/n(Ti4+)=1/34,硫酸浸溃浓度0.8mol/L,硫酸浸渍时间24 h,焙烧温度480℃,活化时间3 h。  相似文献   

14.
以五水硝酸锆和九水硅酸钠为锆源和硅源、过硫酸铵为浸渍液,采用共沉淀法制备了S2O82-/ZrO2-SiO2固体超强酸催化剂,并对催化剂进行了XRD,FTIR,SEM表征。以硬脂酸和正丁醇酯化合成硬脂酸正丁酯反应为探针,考察了催化剂制备条件和反应条件对酯化反应的影响。表征结果显示,SiO2的引入延迟了ZrO2的晶化和晶相的转化,当焙烧温度为550℃时,催化剂中四方晶型ZrO2结构和单斜晶型ZrO2结构同时存在,催化剂表面呈针状。在n(硝酸锆)∶n(硅酸钠)=2.0∶1.5、浸渍液过硫酸铵浓度0.5 mol/L、浸渍时间2 h、焙烧温度450℃、焙烧时间3 h的条件下制备的S2O82-/ZrO2-SiO2固体超强酸的催化活性较好。酯化反应的适宜条件为:硬脂酸用量5.7 g、n(硬脂酸)∶n(正丁醇)=1∶3、催化剂用量0.2 g、反应温度120℃、反应时间2.5 h;在此条件下,酯化率可达98.3%。  相似文献   

15.
以MgCl2·6H2O和沉淀剂为原料,采用沉淀法制备MgO粉体。考察了制备条件对产物比表面积的影响,确定了高比表面积MgO粉体的制备条件:碳酸钠为沉淀剂、MgCl2溶液浓度1.0mol/L、反应温度30℃、反应体系pH值为9.8~10、中间产物焙烧温度500℃。  相似文献   

16.
介孔S2O82-/SnO2固体超强酸催化合成草酸二异戊酯   总被引:1,自引:0,他引:1  
以SnCl4o5H2O和聚乙二醇6000为模板剂,采用模板法合成中孔S2O82-/SnO2固体超强酸催化剂,用Hammett指示剂法、TGA-DTA、XRD、N2-吸附进行了表征,以草酸与异戊醇的酯化反应为探针反应,探讨了S2O82?/SnO2固体超强酸的催化活性,研究了焙烧温度、酸/醇比、催化剂加入量、反应时间等对反应酯化率的影响。结果表明:介孔S2O82?/SnO2固体超强酸催化剂具有四方晶系结构,S2O82-可延迟SnO2的晶化、抑制SnO2晶粒长大,对草酸二异戊酯的合成具有良好的催化活性;在催化剂的焙烧温度为500℃、n(异戊醇):n(草酸)=3:1、带水剂甲苯加入量为30 mL 、m(催化剂):m(草酸)=7.5、反应时间为2.5 h 的条件下,草酸二异戊酯收率可达到 99.2%;在中国石油抚顺石化公司石油一厂催化裂化柴油中添加草酸二异戊酯后十六烷值可提高 1.2~3.0 个单位,而其它性质无明显变化。  相似文献   

17.
制备条件对ZrO_2晶型的影响——四方ZrO_2生成条件考察   总被引:2,自引:0,他引:2  
韦薇 《天然气化工》1999,24(6):7-11
用X 射线粉末衍射仪考察了从ZrCl4 和ZrOCl2·8H2O 出发,经过不同的处理,制备出不同晶型的ZrO2 。讨论了影响四方ZrO2 生成的实验条件。结果表明:ZrCl4 在空气中水解并热分解后能得到四方ZrO2 ,其最佳焙烧温度为320 ~350 ℃,该温度下焙烧制得的四方ZrO2 颗粒大小为300 ×10 - 10m ,比表面为99-2m2/g 。焙烧温度更高时,四方ZrO2 逐渐晶化为单斜ZrO2 。ZrCl4 和ZrOCl2·8H2O 氨解后得到的Zr(OH)4 在高温焙烧过程中Cl- ,OH- ,NH+4 等杂质离子的存在不利于四方ZrO2 的生成。而Fe(NO3)3·9H2O,Ni( NO3)2·6H2O 等浸渍盐的存在和混合γ Al2O3 载体,水解、焙烧后极大地有利于四方ZrO2 形成。  相似文献   

18.
采用Fe(OH)3+有机络合剂+H2O2系统,对羟基化法由对叔丁基苯酚(PTBP)制备对叔丁基邻苯二酚(4-TBC)的反应进行了研究。探讨了反应时间、反应温度、催化剂用量、n(H2O2)∶n(PTBP)、溶剂类型等因素对反应的影响。实验结果表明,溶剂类型和n(H2O2)∶n(PTBP)对催化剂的活性影响较大。在PTBP0.80g、n(H2O2)∶n(PTBP)=1.0、乙腈水溶液(乙腈与水体积比2∶1)30mL、Fe(OH)30.05g、邻苯二酚0.05g、反应温度55℃、反应时间60min的条件下,PTBP转化率可达18.5%,4-TBC选择性达89.2%。对反应机理的探索表明,Fe3++H2O2系统中的羟基自由基(.OH)不能对PTBP进行羟基化反应;Fe3++有机络合剂+H2O2系统中以活性铁氧络合物为氧化剂,与有机酚类反应物有良好的反应亲和力,能顺利完成PTBP的羟基化反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号