首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High dielectric Na0.5Bi0.5Cu3Ti4O12 (NBCTO) ceramics were firstly prepared by co-precipitation method at low temperature. X-ray diffraction results revealed that pure phase of NBCTO was achieved by calcination at 950 °C for 2 h. Thermo-gravimetric analysis on a dried NBCTO precursor was carried out to study the thermal decomposition process. The microstructure and dielectric properties of NBCTO ceramics sintered at different temperatures were investigated. The results indicate that the sintering temperature has a sensitive influence on the microstructure and dielectric properties. Higher sintering temperature gave rise to increased dielectric constant and dielectric loss of NBCTO samples, and the sample sintered at 975 °C for 8 h exhibits high dielectric constant of 8.3?×?103 and low dielectric loss of 0.069 at 10 kHz. The dielectric properties were further discussed by the impedance spectroscopy.  相似文献   

2.
MnO2 doped (Na0.82 K0.18)0.5Bi0.5TiO3 lead-free piezoelectric ceramics were prepared by conventional solid-state reaction process and the effect of MnO2 addition on the pyroelectric, piezoelectric and dielectric properties were studied. The experiment results showed that the pyroelectric, piezoelectric, and dielectric properties strongly depended on MnO2 addition in the (Na0.82 K0.18)0.5Bi0.5TiO3 ceramics. Excellent electrical properties were obtained in (Na0.82 K0.18)0.5Bi0.5TiO3 with 0.8?mol% MnO2. The large dielectric loss of pure BNT ceramics was significantly reduced, the piezoelectric constant was improved, and it also showed excellent pyroelectric properties when compared with other lead free ceramics, with pyroelectric coefficient p?=?17?×?10?4?C/m2K and figure of merit F d ?=?6.56?×?10?5?Pa?0.5. With these outstanding pyroelectric properties, the 0.8?mol% MnO2 doped (Na0.82 K0.18)0.5Bi0.5TiO3 ceramic can be a promising material for pyroelectric sensor applications in future.  相似文献   

3.
Phase structure, microstructure, piezoelectric and dielectric properties of the 0.4 wt% Ce doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 (Ce-BNT6BT) ceramics sintered at different temperatures have been investigated. The powder X-ray diffraction patterns showed that all of the Ce-BNT6BT ceramics exhibited a single perovskite structure with the co-existence of the rhombohedral and tetragonal phase. The morphologies of inside and outside of the bulk indicated that the different sintering temperatures did not cause the second phase on the inside of bulk. However, the TiO2 existed on the outside of the bulk due to the Bi2O3 and Na2O volatilizing at higher temperature. The ceramics sintered at 1,200 °C showed a relatively large remnant polarization (P r) of about 34.2 μC/cm2, and a coercive field (E c) of about 22.6 kV/cm at room temperature. The permittivity ? r of the ceramics increased with the increasing of sintering temperature in antiferroelectric region, the depolarization temperature (T d) increased below 1,160 °C then decreased at higher sintering temperature. The resistivity (ρ) of the Ce-BNT6BT ceramics increased linearly as the sintering temperature increased below 1,180 °C, but reduced as the sintering temperature increased further. A maximum value of the ρ was 3.125?×?1010 ohm m for the Ce-BNT6BT ceramics sintered at 1,180 °C at room temperature.  相似文献   

4.
Bismith sodium titanate (BNT)-based powders were prepared by conventionally mixed-oxide method using Bi2O3, Na2CO3 and TiO2. The La2O3 was added as the modifier to the BNT composition for easily poling and reducing an abnormal dielectric loss at high temperatures. In this study, the investigated compositions were Bi0.5Na0.5TiO3 and Bi0.5Na0.485La0.005TiO3. The powders were calcined at 900 °C for 2 h by slow heating rate at 100 °C/h. The calcined BNT-based powders were then attrition-milled for 3 h with a high speed at 350 rpm. After drying, the fine powders were uniaxially pressed and then cold-isostatically pressed (CIP) at 240 MPa for 10 min. All pressed pellets were sintered at 1000–1100 °C for 2 h in air atmosphere. The microstructure of sintered pellets was investigated by SEM. Results of dielectric and piezoelectric property measurement were also reported.  相似文献   

5.
We studied the effect of Bi4Ti3O12 (BiT) platelet addition in Bi0.5(Na0.75K0.25)0.5TiO3 (BNKT) ceramics by preparing two kinds of BNKT ceramics. One type of BNKT ceramic was fabricated by a conventional solid state reaction method (normal sample), while the other by addition of 15 wt% BiT platelets to BNKT powders (BiT-added sample). In the case of BiT-added BNKT ceramics, plate like grains were formed by the reaction of BiT platelets with Na2CO3, K2CO3, and TiO2 during the sintering process. The grain size of BiT-added BNKT ceramics was 10 times larger than that of normal BNKT ceramic. The piezoelectric strain and d33 values of BiT-added BNKT ceramics were 0.135% and 225 pm/V, respectively. These values were 35% higher than those of normal BNKT ceramics. The piezoelectric properties of BiT-added BNKT ceramics were enhanced by the higher domain activity due to a decrease in domain density at larger grain sizes.  相似文献   

6.
In this article, (Na0.5Bi0.5)1-xBaxTiO3 lead-free piezoelectric ceramics were prepared by solid-state reaction. The influence of Ba contents on phase structures, compositional distribution and electrical properties of (Na0.5Bi0.5)1-xBaxTiO3 ceramics were systematically investigated to further understand the nature of phase transition. It was found that the phase structure of (Na0.5Bi0.5)1-xBaxTiO3 transforms from rhombohedral to tetragonal symmetry at x = 0.06 ~ 0.07 and Ba2+ segregation forms the coexistence of Ba-rich tetragonal and Ba-deficient rhombohedral phases close to MPB. The electrical properties of prepared samples regularly changed with Ba content, which is closely related to the distribution of rhombohedral and tetragonal phases. The prepared sample near MPB exhibited the largest dielectric constant and the excellent piezoelectric properties (the maximal measuring field reached 78 kV/cm and the piezoelectric constant d 33 = 151pC/N).  相似文献   

7.
The piezoelectric properties of (1?x)(Bi0.5Na0.5)TiO3-xBaTiO3 ceramics were reported and their piezoelectric properties reach extreme values near the MPB (about x?=?0.06). The X-ray analysis of (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics for all compositions exhibited a pure perovskite structure without any secondary phase. Within a certain ratio of contents, the co-doped ceramics enhanced piezoelectric coefficient (d 33 ), lowered the dielectric loss, and increased the sintered density. The temperature dependence of relative dielectric permittivity (K 33 T ) reveals that the solid solutions experience two phase transitions, ferroelectric to anti-ferroelectric and anti-ferroelectric to relaxor ferroelectric, which can be proven by P-E hysteresis loops at different temperatures. In addition, the specimen containing 0.04/0.01 wt.% CaO/MnO showed that the coercive field E c was a minimum value of 26.7 kV/cm, while the remnant polarization P r was a maximum value of 38.7 μC/cm2, corresponding to the enhancement of piezoelectric constant d33 of 179 pC/N, electromechanical coupling factor k p of 37.3%, and relative dielectric permittivity K 33 T of 1137. (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics co-doped with CaO/MnO were considered to be a new and promising candidate for lead-free piezoelectric ceramics owing to their excellent piezoelectric/dielectric properties, which are superior to an un-doped BNBT system.  相似文献   

8.
[Bi1-z(Na1-x-y-zKxLiy)]0.5BazTiO3 lead-free piezoelectric ceramics were fabricated by ordinary ceramic technique and the piezoelectric and ferroelectric properties of the ceramics were studied. The ceramics can be well sintered at 1,100–1,150 °C for 2 h. X-ray diffraction (XRD) analysis shows that K+, Li+ and Ba2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a solid solution with a single-phase perovskite structure. The introduction of K+, Li+ and Ba2+ into Bi0.5Na0.5TiO3 significantly decreases the coercive field E c but maintains the large remanent polarization P r of the materials. The ceramics provide piezoelectric constant d 33 of 205 pC/N, electromechanical coupling factor k p of 0.346, remanent polarization P r of 31.7–38.5 μC/cm2, and coercive field E c of 3.18–5.16 kV/mm.  相似文献   

9.
(1-x) (Na0.5Bi0.5TiO3)-xK0.5Na0.5NbO3/NBT-xKNN [x?=?0.07, 0.06, 0.05] ferroelectric ceramics were prepared by solid state synthesis route (SSSR). The effects of KNN contents on the microstructure, dielectric, piezoelectric and ferroelectric properties of the NBT-xKNN system were investigated in detail. For single perovskite phase formation, the calcination temperature was optimized at 800 °C for 6 h. From the XRD study, the morphotropic phase boundary (MPB) was confirmed for x?=?0.07 composition. For better densification, the sintering temperature was optimized for 1150 °C for 4 h. SEM micrographs illustrate the closely packed and non-uniform distribution of grains. Diffusive type of behaviour was observed in all the ceramics. Polarization (P) vs. electric field (E) study confirmed the ferroelectric nature of the NBT-xKNN ceramics. The bipolar field-induced strain measurement for all the ceramic samples showed butterfly-shaped loops indicating their piezoelectric nature. Among all the different compositions in MPB region, high dielectric constant (εr) of?~?3011, high remnant polarization (P r ) of 17.88μC/cm2 and high strain % of 0.41, were obtained in NBT-xKNN system with x?=?0.07 confirming the existence of MPB at this composition.  相似文献   

10.
Several new systems of Bi0.5Na0.5TiO3-based lead-free piezoelectric ceramics were proposed based on the design of the multiple complex in the A-site of ABO3 compounds. These ceramics were prepared by conventional ceramic techniques. The comparison of the piezo- and ferroelectric properties of these ceramics with those of the best properties of the Bi0.5Na0.5TiO3-based lead-free piezoelectric ceramics published recently shows that these ceramics of the new systems have better ferroelectric and piezoelectric performance, and better temperature characteristic of the properties. Among these materials, Bi0.5(Na1?x?y K x Li y )0.5TiO3 possesses higher piezoelectric constant (d 33?=?230.8 pC/N), higher electromechanical couple factor (k p?=?0.41), larger remanent polarization (P r?=?40 μC/cm2) and a better PE hysteresis loop below 200 °C. Practical devices such as ceramic middle frequency filters and buzzers have been made by using these lead-free piezoelectric ceramics.  相似文献   

11.
BaTiO3 (BT) based X9R ceramics with high permittivity about 1700 were prepared by doping and pre-sintering technique. Pure Bi0.5Na0.5TiO3 (BNT) dopant was synthesized by the conventional solid state reaction first. Using this new approach, high performance BTBNT (BT doped with BNT) materials, owning high Curie temperature (139 °C), flat ferroelectric transition region and large permittivity at room temperature, were obtained. The effects of several dopants on dielectric properties of BTBNT ceramics were measured by the LCR meter. The suppression effect for the peaks in the dielectric constant at Curie temperature of these dopants have been ranked as follows: BiNbO4 > CaZrO3 > Nb2O5 > BNT.  相似文献   

12.
(Bi0.5Na0.5)Zr1-xTixO3 with x = 0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 ceramics were fabricated by a conventional sintering technique at 850–950°C for 2 h. From X-ray diffraction study, three regions of different phases were observed in the ceramic system; i.e., orthorhombic phase region (0 ≤ x ≤ 0.2), mixed-phase region (0.3 ≤ x ≤ 0.4), and rhombohedral phase region (0.5 ≤ x ≤ 0.6). The thermal expansion coefficient data indicated the phase transition in the temperature range from 100°C–150°C of the ceramics. The thermal strain curve of all compositions suggested a decrease of local polarization with temperature increment up to the Burns temperature.  相似文献   

13.
ABSTRACT

Lead-free piezoelectric ceramics (K0.5Na0.5)(Nb1-xSbx)O3+0.5 mol.%MnO2, where x = 0 ÷ 0.10, with single phase structure and rhombohedral symmetry at room temperature were prepared by conventional ceramic technology. The optimal sintering temperatures of compositions were within 1100°–1140°C. MnO2 functions as a sintering aid and effectively improves the densification. The samples reached density from 4.26 g/cm3 for undoped (K0.5Na0.5)NbO3 to 4.40 g/cm3 for Mn/Sb5+ co-doped ceramics. The co-effects of MnO2 doping and Sb5+ substitution lead to significant improvement in dielectric and piezoelectric properties: ε at the Tc increased from 6000 (KNN) to 12400 (x = 0.04), d33 = 92 ÷ 192 pC/N, kp = 0.32 ÷ 0.46, kt = 0.34 ÷ 0.48.  相似文献   

14.
ABSTRACT

Lithium-doped K0.5Na0.5NbO3 (KLNN) films were fabricated by chemical solution deposition on Pt/TiO2/SiO2/Si substrates. Homogeneous and stable precursor solutions were prepared by controlling the reaction of starting metal alkoxides. Perovskite KLNN single-phase thin films were successfully synthesized on Pt/TiO x /SiO2/Si substrates. The 0.75-μ m-thick KLNN film annealed at 650°C exhibited ferroelectric polarization hysteresis loops at ?250°C. The loop at room temperature was round, indicating the film contained leakage components. The dielectric constant under zero bias was 490 at room temperature. A typical upside-down butterfly DC bias-capacitance curve was obtained in the KLNN film capacitors at room temperature, indicating that polarization reversal occurred in the obtained KLNN films.  相似文献   

15.
We studied sintering temperature to enhance the piezoelectric and dielectric properties of 0.98(Na0.5?K0.5)NbO3-0.02Li(Sb0.17Ta0.83)O3?+?0.01wt%ZnO (hereafter NKN-LST+ZnO) lead free piezoelectric ceramics. The synthesis and sintering method were the conventional ceramic technique and sintering was executed at 1080?~?1120°C. We found that optimal sintering temperature and NKN-LST+ZnO ceramics showed the highest piezoelectric properties and dielectric properties at the optimal sintering temperature. The NKN-LST+ZnO ceramics sintered at 1090°C show a superior performance with piezoelectric constant d 33?=?185 pC/N, k p?=?0.36, ε 33 T 0?=?491 respectively. These results reveal that NKN-LST+ZnO ceramics are promising candidate materials for lead-free piezoelectric application.  相似文献   

16.
The ternary lead-free piezoelectric ceramics system of (1 – x) [0.88Na0.5Bi0.5TiO3-0.12K0.5Bi0.5TiO3] – xNaNbO3(x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) were synthesized by conventional solid state reaction method. The crystal structure, dielectric, piezoelectric properties and P-E hysteresis loops were investigated. The crystalline structure of all compositions is mono-perovskite phase ascertained by XRD, and the lattice constant was calculated from the XRD data. Temperature dependence of dielectric constant r and dissipation factor tan measurement revealed that all compositions experienced two phase transitions: from ferroelectric to anti-ferroelectric and from anti-ferroelectric to paraelectric, and these two phase transitions have relaxor characteristics. Both transition temperatures Td and Tm are lowered due to introduction of NaNbO3. P-E hysteresis loops show that 0.88Na0.5Bi0.5TiO3-0.12K0.5Bi0.5TiO3 ceramics has the maximum Pr and Ec corresponding to the maximum values of electromechanical coupling factor Kp and piezoelectric constant d33. The piezoelectric constant d33 and electromechanical coupling factor Kp decrease a little, while the dielectric constant 33T/0 improves much more when the concentration of NaNbO3 is 8 mol%.  相似文献   

17.
The electric properties of BaTiO3–(Bi1/2Na1/2)TiO3 (BT–BNT) solid solution ceramics were studied as a lead-free PTCR (positive temperature coefficient of resistivity) thermistor material usable over 130°C. For determining the maximum switching temperature T s, the phase diagram of BT–BNT binary system was clarified. Two semiconductorization processes and their electric properties are described. The lanthanum(La)-doped BBNT ceramics sintered in air still showed dielectric behaviors, but the niobium(Nb)-doped ones had a low resistivity at room temperature, ρ RT, on the order of 103 Ωcm and showed a PTC behavior. Sintering under a low O2 atmosphere produces BT–BNT ceramics with less than 102 Ωcm compared to those prepared in air. Our current research produced the BBNT ceramics with T s values around 210°C by increasing the (Bi1/2Na1/2) content in the ceramics.  相似文献   

18.
In this paper, lead-free (1-x)(Bi0.5Na0.5)0.94Ba0.06TiO3-xBiAlO3 (BNBT-BA, x?=?0, 0.010, 0.015, 0.020, 0.025, and 0.030) piezoelectric ceramics were synthesized using a conventional solid-state reaction method. The effect of BiAlO3 concentration on dielectric, ferroelectric and piezoelectric properties were investigated. The ferroelectric and piezoelectric properties of BNBT ceramics are significantly influenced by the presence of BA. In the composition range studied, X-ray diffraction revealed a perovskite phase with the coexistence of rhombohedral and tetragonal phases. The temperature dependence of dielectric properties showed that the depolarization temperature (T d) shifted towards lower temperatures and that the degree of diffuseness of the phase transition around T d and T m became more obvious with increasing BiAlO3 content. The remanent polarization increased with increasing BA, and reached a maximum value of 30 μC/cm2 at x?=?0.020. As a result, at x?=?0.020, the piezoelectric constant (d 33) and the electromechanical coupling factor (k p) of the ceramics attained maximum values of 188 pC/N and 34.4 %, respectively. These results indicate that BNBT-BA ceramics is a promising candidate for lead-free piezoelectric materials.  相似文献   

19.
MgTiO3-based microwave dielectric ceramics were prepared successfully by reaction sintering method. The X-ray diffraction patterns of the sintered samples revealed a major phase of MgTiO3-based and CaTiO3 phases, accompanied with Mg2TiO4 or MgTi2O5 determined by the sintering temperature and time. The microwave dielectric properties had a strong dependence of sintering condition due to the different phase compositions and the microstructure characteristics. The ceramics sintered at 1360 °C for 4 h exhibited good microwave dielectric properties: a dielectric constant of 20.3, a high quality factor of 48,723 GHz (at 9GHz), and a temperature coefficient of resonant frequency of ?1.8 ppm/oC. The obtained results demonstrated that the reaction-sintering process is a simple and effective method to prepare the MgTiO3-based ceramics for microwave applications.  相似文献   

20.
Plate-like Bi2.5Na3.5Nb5O18 particles were used as templates to fabricate grain-oriented Na0.5Bi0.5TiO3—BaTiO3 (NBTBT) ceramics by reactive-templated grain growth. The effects of sintering conditions on the grain orientation and microstructure of the textured NBTBT ceramics were investigated, and the kinetic mechanism of grain growth is discussed. The results show that textured ceramics were successfully obtained with orientation factor more than 0.6. NBTBT specimens are composed of strip-like grains and equiaxed shaped grains. The textured ceramics have a microstructure with strip-like grains aligning in the direction parallel to the casting plane and exhibit an {h00} preferred orientation. The degree of grain orientation increases initially, then decreases with increasing sintering temperature and soaking time. The maximum texture fraction is 0.69 when sintered at 1185 °C for 6 h. The kinetic exponent n and activation energy Q of the two types of grain in textured NBTBT ceramics were calculated. The results show that the grain growth mechanism of oriented grains is controlled not only by grain lattice diffusion, but also by grain boundary diffusion. The grain growth mechanism of matrix grains is mainly controlled by the grain boundary curvature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号