首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In the present work efforts have been made to develop microheater integrated gas sensors with low power consumption. The design and simulation of a single-cell microheater is carried out using ANSYS. Low power consumption (<35?mW) platinum micro-heater has been fabricated using bulk micromachining technique on silicon dioxide membrane (1.5?μm thin), which provided improved thermal isolation of the active area of 250?×?250?μm2. The micro-heater has achieved a maximum temperature of ~950?°C at an applied dc voltage of 2.5 V. Fabricated mircro-heater has been integrated with SnO2 based gas sensors for the efficient detection of H2 and NO2 gases. The developed sensors were found to yield the maximum sensing response of ~184 and ~2.1 with low power consumption of 29.18 and 34.53?mW towards the detection of 1?ppm of NO2 gas and 500?ppm of H2 gas, respectively.  相似文献   

2.
A low operating temperature CO (carbon monoxide) sensor was fabricated from a nanometer-scale SnO2 (tin oxide) powder. The SnO2 nanoparticles in a size range 10–20 nm were synthesized as a function of surfactant (tri-n-octylamine, TOA) addition (0–1.5 mol%) via a simple thermal decomposition method. The resulting SnO2 nanoparticles were first screen-printed onto an electrode patterned substrate to be a thick film. Subsequently, the composite film was heat-treated to be a device for sensing CO gas. The thermal decomposed powders were characterized by field-emission scanning electron microscopy (FESEM), X-ray diffractometry (XRD), and surface area measurements (BET). The CO-sensing performance of all the sensors was investigated. The experimental results showed that the TOA addition significantly decreased the particle size of the resulting SnO2 nanoparticle. However, the structure of the powder coating was crucial to their sensing performance. After heat-treatment, the smaller particle tended to cause the formation of agglomeration, resulting in the decline of surface area and reducing the reaction site during sensing. However, the paths for the sensed gas entering between the agglomerated structure may influence the sensing performance. As a CO sensing material, the SnO2 nanoparticle (~12 nm in diameter) prepared with 1.25 mol% TOA addition exhibited most stable electrical performance. The SnO2 coating with TOA addition >0.75 mol% exhibited sensor response at a relatively low temperature of <50°C.  相似文献   

3.
SnO2 ceramics with relative density about 98 % were obtained based on the addition of Zn2SnO4. The shrinkage of the ceramic samples increased sharply and got a saturated value about 13.3 % with doping more than 0.2 mol% Zn2SnO4. In the dielectric spectra, no relaxation peaks were observed and no deep trap states could be detected from 50–300 °C and 40–5 M?Hz. Thus, the oxygen vacancies may not be necessary for the densification of SnO2 ceramics during sintering process. For all the samples, nonlinear electrical properties were observed and the breakdown electrical fields are in good agreement with the barrier height. With increasing Zn2SnO4 content, the activation energies E a for O? or O2? adsorbed at grain boundary decreased and the doping of Zn2SnO4 may be an important reason for the improve of grain conductivity and formation of Schottky barrier.  相似文献   

4.
NO x sensing properties of SnO2-xCr2O3 as a varistor-type gas sensor have been investigated in the temperature range of 200–600°C. The breakdown voltage of SnO2 shifted to a higher electric field upon exposure to NO2 at 300–500°C, and the largest breakdown voltage shift, i.e. the highest NO2 sensitivity was observed at 400°C. In contrast, the direction of the breakdown voltage shift in NO varied with temperature: the breakdown voltage shifted to a lower electric field at 300°C, but to a higher electric field at 500°C, and remained almost unchanged at 400°C. The NO2 sensitivity of SnO2 was superior to the NO sensitivity at every temperature, and then the SnO2 exhibited good selectivity to NO2 at 400°C. The breakdown voltage of Cr2O3 shifted in the reverse direction upon exposure to NO and NO2, in comparison with those observed with SnO2, owing to its p-type semiconductivity. Thus, Cr2O3 also exhibited certain sensitivity to both NO and NO2 at 200°C, being more sensitive to NO2, though the sensitivities decreased drastically at temperatures higher than 300°C. The addition of 5.0 wt% Cr2O3 to SnO2 resulted in a significant improvement of NO and NO2 sensitivities at 600°C, being accompanied by an increase in the breakdown voltage in air. Especially, the NO sensitivity was superior to the NO2 sensitivity in the concentration range of 20–100 ppm, and then SnO2 mixed with 5.0 wt% Cr2O3 was found to be the most suitable candidate for a NO sensor among the sensors tested. The increase in the breakdown voltage in air induced by the Cr2O3 addition was confirmed to arise from both the decrease in the particle size of SnO2 and the formation of micro p-n junctions at grain boundaries. The decrease in the particle size was also responsible for the increased NO and NO2 sensitivities, but the p-n junctions were suggested to play a more important role in promoting and stabilizing the chemisorption of NO at higher temperatures.  相似文献   

5.
SnO2-core/V2O5-shell nanorods were synthesized using a two-step process: thermal evaporation of Sn powders and sputter-deposition of V2O5. The core-shell nanorods were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and photoluminescence spectroscopy. The diameters of these core-shell nanorods ranged from 80 to 200 nm with a shell layer thickness in the range of 7–13 nm. The cores and shells of the annealed core-shell nanorods consisted of a single crystal tetragonal-structured SnO2 and a single crystal orthorhombic-structured V2O5, respectively. Photoluminescence measurements revealed the SnO2 nanorods to have a yellow emission band centered at approximately 590 nm, which was enhanced significantly by the V2O5 coating and further by thermal annealing. The sensitivity of the networked SnO2-core/V2O5-shell nanorod sensor to NO2 gas was slightly higher than that of the bare SnO2 nanorod sensor. The enhanced sensitivity of the SnO2 nanorods by the V2O5 coating was attributed to the modulation of electron transport by the SnO2-V2O5 heterojunction with an adjustable energy barrier height.  相似文献   

6.
Densified SnO2-Zn2SnO4 composite ceramics were prepared by conventional ceramic processing and the sintering, electrical properties were investigated. The X-ray diffraction results and sintering curves showed that the pellets pressed by ZnO and SnO2 mixed powders began to shrink after Zn2SnO4 was synthesized at about 950 °C. The results suggest that the densification of SnO2-Zn2SnO4 composite ceramics cannot be attributed to the oxygen vacancies created by acceptor doping as traditional viewed. The measurement of J-E curves showed that the SnO2-Zn2SnO4 composite ceramics have good nonlinear properties (α?~?3.9–4.5) without any other doping. Another interesting result is that the composite ceramics have low breakdown electrical field (E B?~?10 V/mm) with high relative dielectric constant (1 kHz, ε r?~?6?×?103). Further studies demonstrate that the varistor behavior is also a grain boundary barrier effect and the barrier height is about 0.84 eV.  相似文献   

7.
X-ray photoelectron spectroscopy (XPS) was used to examine the NO2 adsorption behaviour on the LaFeO3 and Pt electrodes of planar yttria stabilized zirconia non-Nernstian gas sensors. The electrochemical sensors were exposed to the same gas atmosphere containing 1000 ppm NO2 at 650°C. XPS of the as-prepared sensors and sensors after exposure to NO2 revealed bonded nitrogen peaks on the surface of the semiconducting oxide but no nitrogen peaks on the Pt electrode. Therefore, NO2 adsorption on a LaFeO3 electrode plays an important role in the NO2 detection mechanism.  相似文献   

8.
The reaction of Ba(NO3)2 with TiO2 was studied by thermogravimetric (TG) and differential scanning calorimetric (DSC) techniques up to 1000°C and in nitrogen atmosphere. It was found that the formation of BaTiO3 takes place above 600°C. BaTiO3 powder was prepared by calcination of Ba(NO3)2 and TiO2 precursor mixture at 800°C for 8 h. X-ray diffraction analysis of the synthesized BaTiO3 confirmed the formation of tetragonal phase. Average crystallite size was found to be 44 nm, For the electrical and morphological characterization pellets of the obtained powder were sintered at 1000 °C for 12 h. Scanning electron micrograph (SEM) exhibits spherical and rod shaped grains. The dielectric constant, dissipation factor, complex plane impedance and ac conductivity of the sintered pellet has been measured in the temperature range of 40–600°C and frequency range of 100 Hz–2 MHz. DC conductivity of the sample was obtained from the impedance data. The conductivities (both ac and dc) and relaxation time (τ) exhibit two regions of temperature dependence, namely region I, which represents (280–450°C) and region II, which governs (450-600°C). Conduction and relaxation in both the temperature regions are explained in terms of hopping of electrons and doubly ionized oxygen vacancies (VO??).  相似文献   

9.
Abstract

In the present work, an efficient NO2 gas sensor has been realised using single phase Barium titanate, BaTiO3, (BTO) thin film, grown by chemical solution deposition technique (CSD). The gas sensing characteristics of BTO thin film were enhanced by integrating WO3 modifier in the form of uniformly distributed circular nano-clusters and continuous overlayer. The WO3 nanoclusters/BTO sensing element exhibited enhanced sensor response (~156) with fast response speed (16?s) at a relatively low operating temperature (140?°C) towards 50?ppm NO2 gas. An attempt has been made to explain the sensing mechanism involving the twin effect of “Fermi-level exchange mechanism” and “spill over mechanism” upon interaction with target NO2 gas. The obtained results in the present work are encouraging for the realization of hand-held NO2 gas sensor.  相似文献   

10.
A simple, inexpensive gas phase reaction termed as “nanocarving process” converts TiO2 grains into arrays of single crystal nanofibers by selective and anisotropic etching. This process is conducted by exposing dense polycrystalline TiO2 to a H2/N2 environment at 700 °C. The dimensions of nanofibers are around 20 nm in diameter and 1 μm in length. The preferred crystallographic orientation for the nanocarving process is the <001> direction. Nanoparticles composed of Fe and Ni were observed on the surface of TiO2 that formed nanofiber tips. Sintering parameters before the nanocarving treatment play a critical role in the formation of nanofibers. As sintering temperature and time increased, the rate of nanofiber generation decreased. Moreover, it was observed that by varying the heat treatment conditions, it is possible to create other structures like nanowhiskers and nanofilaments. Nanowhiskers were formed by reoxidation of nanofiber-formed TiO2 over 600 °C. Nano-filaments were generated by heat treating sintered TiO2 in N2-carrying water vapor at 700 °C.  相似文献   

11.
Nanostructured powders of Nb-doped TiO2 (TN) and SnO2 mixed with Nb-doped TiO2 in two different atomic ratios—10 to 1 (TSN 101) and 1 to 1 (TSN 11)—were synthesized using the reverse micelle microemulsion of a nonionic surfactant (brine solution/1-hexanol/Triton X-100/cyclohexane). The powders were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Thick films were fabricated for gas sensors and characterized by XRD analysis and field emission scanning electron microscopy (FE-SEM). The effects of the film morphology and firing temperature in the range 650–850 °C on CO sensitivity were studied. The best gas response, expressed as the ratio between the resistance in air and the resistance under gas exposure (R air/R gas), was measured for TSN 11 at 11 for 1,000 ppm CO exposure. All types of sensors showed good thermal stability. The electrochemical impedance spectroscopy (EIS) measurements were performed in different gas atmospheres (air, O2, CO and NO2) to better understand the electrical properties of the nanostructured mixed metal oxides.  相似文献   

12.
As a positive temperature coefficient of resistivity (PTCR) material, (1-x)BaTiO3-xK0.5Bi0.5TiO3 (BT-KBT, 0.05≦ x ≦0.15) ceramics without any donor doping were prepared by a conventional oxide mixing method. All samples were sintered in an Ar atmosphere at 1280?~?1350°C, subsequently, reoxidized at 800?~?1100°C in a gas mixture (99 %Ar–1 %O2). The PTCR behavior of BT-KBT ceramics were investigated in terms of KBT content, reoxidation temperature and time. The results showed that the BT-KBT ceramics exhibited an abrupt increase in their resistivity near the Curie temperature (Tc) after annealing in gas mixture, Tc of 0.9BT-0.1KBT ceramic was shifted to a higher temperature (~150°C). Furthermore, the room-temperature resistivity (ρRT) of ceramic samples sintered in Ar and reoxidized in a gas mixture decreased to 102 Ω·cm. The jump in resistivity (maximum resistivity [ρmax]/minimum resistivity [ρmin]) was enhanced by three orders of magnitude through a suitable reduction–reoxidation method without sacrificing the ρRT.  相似文献   

13.
The electrical, optical, structural and chemical bonding properties of fluorine-doped tin oxide (SnOx:F) films deposited on a plastic substrate prepared by Electron Cyclotron Resonance–Metal Organic Chemical Vapor Deposition (ECR–MOCVD) were investigated with special attention to the process parameters such as the H2/TMT mole ratio, deposition time and amount of fluorine-doping. The four point probe method, UV visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic emission spectroscopy (AES), X-Ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the films. Based on our experimental results, the characteristics of the SnOx:F thin films were significantly affected by the process parameters mentioned above. The amount of fluorine doping was found to be one of the major parameters affecting the surface resistivity, however its excess doping into SnO2 lead to a sharp increase in the surface resistivity. The average transmittance decreased with increasing film thickness. The lowest electrical resistivity of 5.0?×?10?3 Ω.cm and highest optical transmittance of 90% in the visible wavelength range from 380 to700 nm were observed at an H2/TMT mole ratio of 1.25, fluorine-doping amount of 1.3 wt.%, and deposition time of 30 min. From the XRD analysis, we found that the SnOx:F films were oriented along the (2 1 1) plane with a tetragonal and polycrystalline structure having the lattice constants, a?=?0.4749 and c?=?0.3198 nm.  相似文献   

14.
The dielectric properties of Zn2SnO4 thin films with various degrees of ZnO dopant concentration were investigated. Zn2SnO4 thin films were prepared using the radio frequency magnetron sputtering. The X-ray diffraction patterns of the 0 and 75 mole % ZnO doped Zn2SnO4 thin films revealed that Zn2SnO4 is the main crystalline phase, which is accompanied by a little SnO2 as the second phase. The second phase SnO2 in specimens vanished when the extent of ZnO additive was increased to 100 mole%. A dielectric constant of 15–40 and a loss factor of 0.10–0.14 of Zn2SnO4 thin films were measured at 1 MHz with ZnO dopant concentration in the range of 0–100 mole%.  相似文献   

15.
ABSTRACT

Copper Selenides are important semiconductor materials with excellent performance. Cu2-xSe and CuSe films were synthesized by spin-coating and chemical co-reduction method. The phases of product films were analyzed by X-ray diffraction (XRD) and the morphology was characterized by scanning electron microscopy (SEM), and the compositions of products were analyzed by energy dispersive spectroscopy (EDS). The surface resistance of the product film was measured using a four-probe resistance instrument. When Copper chloride was chosen as copper source, the products contain Cu2-xSe, CuSe and a small amount of NaCl. When the reacting temperature is below 180 °C, the XRD intensity of impurity phase NaCl is obviously increased, while it is easier to produce Cu2Se film at 200 or 220 °C. The sample obtained at 160 °C for 20 h consists of about 0.3 ~ 0.5 µm particles, while the sample obtained at 220 °C shows about 2 ~ 4 µm flake crystals; When the copper nitrate is used as a raw material, the XRD peaks of the product obtained at 200 °C for 20 h are much high and sharp, the phases obtained are mainly CuSe. The sample obtained at 200 °C consists of hexagonal flaky crystals with about 2 ~ 3 µm diameters, while it consists of particles with about 0.3 ~ 0.5 µm diameters for the sample obtained at 220 °C. In addition, the longer reaction time is conducive to the copper selenide formation, for example the single phase CuSe film can be obtained at 220 °C. The average resistivity of Cu-Se films synthesized at 200 °C for 20 h is 2.12E-3 Ω·cm.  相似文献   

16.
Tin oxide thin films have been deposited by a custom-designed inductively coupled plasma chemical vapor deposition (ICP-CVD) system in order to explore its application as an alternative approach for thin film gas sensor preparation. The as-deposited SnO2 films were of polycrystalline structure with nano-size grains of 12 nm. The SnO2 films exhibited a maximum sensitivity of 43 to 1000 ppm H2 at an optimum operating temperature of 350C. The response time of the SnO2 films was 12 s and full recovery was achievable.  相似文献   

17.
We characterized the electrical and chemical properties of Cu-doped In2O3(CIO) (2.5 nm thick)/Sb-doped SnO2(ATO) (250 nm thick) contacts to p-type GaN by means of current-voltage measurement, scanning transmission electron microscope (STEM) and x-ray photoemission spectroscopy (XPS). The CIO/ATO contacts show ohmic behaviors, when annealed at 530 and 630°C. The effective Schottky barrier heights on diodes made with Ni (5 nm)/Au (5 nm) contacts decrease with increasing annealing temperature. STEM/energy dispersive x-ray (EDX) profiling results exhibit the formation of interfacial In-Ga-Sn-Cu-oxide. XPS results show a shift of the surface Fermi level toward the lower binding energy side upon annealing. Based on the STEM and XPS results, the ohmic formation mechanisms are described and discussed.  相似文献   

18.
In this work, titanium dioxide (TiO2) nanofibers were synthesized by a combination of electrospinning and calcinations process using a solution that contained poly(vinyl pyrolidone)(PVP) and titanium isopropoxide. Titanium isopropoxide/PVP composite fibers were investigated at different titanium isopropoxide concentrations and voltages. The fibers were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). SEM images showed that the morphology of as-spun TiO2 nanofibers are smooth, uniform and good continuous fiber morphology with fiber diameters of 150–290 nm when calcined of 600°C for 1 h in air. XRD patterns revealed that the crystallinity corresponded to TiO2 in the form of rutile structure. The fiber diameters were slightly decreased with increase of the applied voltages and the titanium tetraisopropoxide concentration.  相似文献   

19.
Spherical shape BaO–B2O3–SiO2 glass powders were directly prepared by high temperature spray pyrolysis at >1000 °C. The thermal and morphological characteristics of the prepared glass powders were investigated. The glass powders prepared at temperature of 1000 °C had spherical shape and hollow inner structure. On the other hand, the powders prepared at high temperature of 1300 °C had complete spherical shape and dense inner structure by complete melting. The mean size of the glass powders was 0.9 μm. The glass transition temperatures (T g) of the glass powders obtained by spray pyrolysis at preparation temperatures between 1000 and 1300 °C were 601.1 °C regardless of the preparation temperatures. The specimen of the glass powders obtained by spray pyrolysis at the preparation temperature of 1300 °C had small number of voids even at low sintering temperature of 700 °C. In addition, the specimen sintered at temperature of 800 °C had dense microstructure without voids.  相似文献   

20.
In order to investigate the structural and electrical properties of La2O3 films deposited by O2 and O3, films were hydrated in DI-water and annealed at 600 and 900 °C. La2O3 films deposited by O3 showed better hydration resistance than those deposited by O2. The thickness of both hydrated films decreased after annealing at 600 °C and increased after annealing at 900 °C. The dielectric constants of the La2O3 films deposited by O3 were greater than films deposited by O2 after annealing at 600 °C and slightly less after annealing at 900 °C. The leakage current density of the La2O3 films deposited by O3 was lower than those by O2 after annealing at 900 °C. To this end, La2O3 films deposited by O3 showed better dissolution resistance than O2 for hydration experiment as a function of dipping time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号