首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 16:1 STS-768 multiplexer IC has been designed and fabricated using the Vitesse Semiconductor VIP-1 process. This IC is part of a complete chip-set solution for a 40-Gb/s STS-768 optical communication transceiver module. The multiplexer IC features a full-rate clock multiplication unit and a data retimer in the output stage to reduce duty-cycle distortion and jitter in the output data eye. Because of its strict timing requirements, this approach needs fast logic gates with a very low gate delay. The Vitesse VIP-1 process, with 150-GHz f/sub t/ and 150-GHz f/sub max/ heterojunction bipolar transistor, is an obvious choice to implement this IC. The multiplexer IC typically dissipates 3.6 W from -3.6-V and -5.2-V power supplies. This paper discusses the design and development of a 40-Gb/s 16:1 multiplexer IC including current-mode logic gate circuit design, divide-by-two, 40-GHz clock tree, voltage-controlled oscillator, clock multiplication unit, and output driver. Layout design and package design are also discussed due to their significant roles in the IC performance.  相似文献   

2.
A 43-Gb/s receiver (Rx) and transmitter (Tx) chip set for SONET OC-768 transmission systems is reported. Both ICs are implemented in a 0.18-/spl mu/m SiGe BiCMOS technology featuring 120-GHz f/sub T/ and 100 GHz f/sub max/. The Rx includes a limiting amplifier, a half-rate clock and data recovery unit, a 1:4 demultiplexer, a frequency acquisition aid, and a frequency lock detector. Input sensitivity for a bit-error rate less than 10/sup -9/ is 40 mV and jitter generation better than 230 fs rms. The IC dissipates 2.4 W from a -3.6-V supply voltage. The Tx integrates a half-rate clock multiplier unit with a 4:1 multiplexer. Measured clock jitter generation is better than 170 fs rms. The IC consumes 2.3 W from a -3.6-V supply voltage.  相似文献   

3.
A 1.22-GHz downconverter used in a dual-conversion tuner IC for OpenCable applications is presented. The downconverter is configured as an image-reject receiver and utilizes a trifilar transformer in conjunction with capacitively cross-coupled common-gate mixer input stages to achieve a large dynamic range with relatively low power consumption. Fabricated in a five-metal 0.35-/spl mu/m, 27-GHz f/sub T/, silicon-on-insulator BiCMOS technology and consuming 124 mA from a 3.3-V supply, it downconverts the input to an IF of 44 MHz and achieves 26-dB gain, 23-dB gain control range, 5.1-dB noise figure, 33-dBmV P/sub 1dB/, 56-dBmV IIP/sub 3/, -72-dBc composite triple beat (CTB), -60-dBc cross-modulation, and 30-dB image rejection.  相似文献   

4.
A 17-GHz RF receiver, consisting of a low-noise amplifier (LNA) and doubly balanced mixers coupled by a monolithic 3.7:1 step-down transformer, realizes over 75 dB of image rejection in a production 100-GHz f/sub T/ SiGe BiCMOS technology. A new coupling transformer winding improves the magnetic coupling coefficient by more than 20% compared to conventional designs, which reduces parasitic effects and increases the overall efficiency of the LNA/mixer combination. Quadrature LO signals with electronically tunable phase are generated by a subharmonically injection-locked oscillator. The measured receiver IIP3 is -5.1 dBm with 17.3-dB conversion gain and 6.5-dB noise figure (SSB 50 /spl Omega/) at 17.2 GHz. The 1.9/spl times/1.0 mm/sup 2/ IC consumes 62.5 mW from a 2.2-V supply.  相似文献   

5.
A 10-Gb/s SiGe HBT tapped delay Hilbert transformer (HT) integrated circuit (IC) is described. The four tap filter uses an integrated LC transmission line with a total delay of 180ps, and the HT has a nominal group delay of 120ps. The circuit is fabricated in a 47-GHz f/sub T/ SiGe HBT process and consumes 112mW from a -3.3-V supply. Measured s-parameters and time domain waveforms are shown to agree with theory. Measurements of a 10-Gb/s optical single sideband system indicate that 7dB of broadband sideband suppression is obtainable using the IC.  相似文献   

6.
A 37-GHz voltage controlled oscillator (VCO) fabricated in IBM's 47-GHz SiGe BiCMOS technology is presented. The VCO achieves a phase noise of -81dBc/Hz at 1-MHz offset from the carrier while delivering an output power of -30dBm to 50 /spl Omega/ buffers. Drawing 15-mA of dc current from a 3-V power supply the VCO occupies 350/spl mu/m/spl times/280/spl mu/m of silicon area. Capacitive emitter degeneration and compact layout are used to achieve high f/sub OSC//f/sub T/ ratio.  相似文献   

7.
The combination of device speed (f/sub T/, f/sub max/ > 150 GHz) and breakdown voltage (V/sub bceo/ > 8 V) makes the double heterojunction bipolar InP-based transistor (D-HBT) an attractive technology to implement the most demanding analog functions of 40-Gb/s transceivers. This is illustrated by the performance of a number of analog circuits realized in an InP D-HBT technology with an 1.2- or 1.6-/spl mu/m-wide emitter finger: a low phase noise push-push voltage-controlled oscillator with -7-dBm output power at 146 GHz, a 40-GHz bandwidth and low-jitter 40-Gb/s limiting amplifier, a lumped 40-Gb/s limiting driver amplifier with 4.5-V/sub pp/ differential output swing, a distributed 40-Gb/s driver amplifier with 6-V/sub pp/ differential output swing, and a number of distributed preamplifiers with up to 1.3-THz gain-bandwidth product.  相似文献   

8.
A wide-band radio-frequency (RF) front-end is designed with a balanced combined low-noise amplifier and a switching mixer (a low-noise converter) in an RF Si-bipolar process with an f/sub T/ of 25 GHz. The circuit achieves 20-dB conversion gain, higher than -4.5-dBm RF-to-IF IIP/sub 3/ (+15.5-dBm OIP/sub 3/) and less than 3.8-dB double-side-band noise figure in 900-MHz (e.g., GSM) and 1.9-GHz (e.g., WCDMA) frequency bands. The -1-dB compression point is -20 dBm at 13-mA DC current consumption from a single 5-V supply. The local-oscillator leakage to the input is less than -56 dBm in the 900-MHz band and less than -63 dBm in the 1.9-GHz band. The -3-dB bandwidth of the amplifier is larger than 3 GHz and a wide-band matching at the input with -10 to -41-dB S/sub 11/ is achieved in the frequency bands of interest by applying a dual-loop wide-band active feedback. The die area is 0.69 /spl times/ 0.9 mm/sup 2/. The circuit is suitable for area-efficient multiband multistandard low-IF receivers.  相似文献   

9.
Incorporating the direct-conversion architecture, a 5-GHz band radio transceiver front end chipset for wireless LAN applications is implemented in a 0.25-μm CMOS technology. The 4-mm2 5.25-GHz receiver IC contains a low noise amplifier with 2.5-dB noise figure (NF) and 16-dB power gain, a receive mixer with 12.0 dB single sideband NF, 13.7-dB voltage gain, and -5 dBm input 1-dB compression point. The 2.7-mm2 transmitter IC achieves an output 1-dB compression of -2.5 dBm at 5.7 GHz with 33.4-dB (image) sideband rejection by using an integrated quadrature voltage-controlled oscillator. Operating from a 3-V supply, the power consumptions for the receiver and transmitter are 114 and 120 mW, respectively  相似文献   

10.
A monolithic 5-6-GHz band receiver, consisting of a differential preamplifier, dual doubly balanced mixers, cascaded injection-locked frequency doublers, and a quadrature local oscillator generator and prescaler, realizes over 45 dB of image-rejection in a mature 25-GHz silicon bipolar technology. The measured single sideband (50 Ω) noise figure is 5.1 dB with an IIP3 of -4.5 dBm and 17-dB conversion gain at 5.3 GHz. The 1.9×1.2 mm2 IC is packaged in a standard 32-pin ceramic quad flatpack and consumes less than 50 mW from a 2.2-V supply  相似文献   

11.
In this paper, we present 40- and 43-GHz voltage-controlled oscillators (VCOs) for use in SONET/SDH optical transmission systems operating at OC-768 rates. SONET system jitter requirements are explained, as are methods for achieving the requisite performance in manufacturable oscillators. We describe in detail a technique for using quadrature-coupled VCOs to achieve a fundamental improvement in jitter power performance. The 40-GHz oscillator has a tuning range of 5 GHz, a single-sideband phase-noise power spectral density of -99 dBc/Hz at 1-MHz offset from the carrier, and consumes 207 mW in the oscillator core. Total power consumption is 363 mW (including biasing and output buffers) from a 3-V supply. The oscillator occupies 0.189 mm/sup 2/ of die area and is implemented in a 120-GHz f/sub T/ SiGe BiCMOS process.  相似文献   

12.
SiGe bipolar transceiver circuits operating at 60 GHz   总被引:2,自引:0,他引:2  
A low-noise amplifier, direct-conversion quadrature mixer, power amplifier, and voltage-controlled oscillators have been implemented in a 0.12-/spl mu/m, 200-GHz f/sub T/290-GHz f/sub MAX/ SiGe bipolar technology for operation at 60 GHz. At 61.5 GHz, the two-stage LNA achieves 4.5-dB NF, 15-dB gain, consuming 6 mA from 1.8 V. This is the first known demonstration of a silicon LNA at V-band. The downconverter consists of a preamplifier, I/Q double-balanced mixers, a frequency tripler, and a quadrature generator, and is again the first known demonstration of silicon active mixers at V-band. At 60 GHz, the downconverter gain is 18.6 dB and the NF is 13.3 dB, and the circuit consumes 55 mA from 2.7 V, while the output buffers consume an additional 52 mA. The balanced class-AB PA provides 10.8-dB gain, +11.2-dBm 1-dB compression point, 4.3% maximum PAE, and 16-dBm saturated output power. Finally, fully differential Colpitts VCOs have been implemented at 22 and 67 GHz. The 67-GHz VCO has a phase noise better than -98 dBc/Hz at 1-MHz offset, and provides a 3.1% tuning range for 8-mA current consumption from a 3-V supply.  相似文献   

13.
This paper describes metal-mask configurable RF circuits using a base circuit fabric that can be configured for various wireless applications using only upper metal and via layers. This front-end circuit fabric achieves a wide range of configurability (e.g., operating center frequency) and is essentially applicable for any IC technology. The prototype RF front-end circuit fabric was designed to be configurable for GPS at 1.5 GHz, W-CDMA at 2.1 GHz and WLAN at 5 GHz in a 0.25-/spl mu/m 47-GHz f/sub T/ SiGe BiCMOS process. The upper three metal and via layers are the only application-specific layers for the three applications. The front-end circuits draw 10.5, 9.5, and 8.5 mA from a 2.5-V supply, respectively, at 1.5, 2.1, and 5 GHz while providing a noise figure of 2.5, 2.8, and 4.5 dB, conversion gain of 24.6, 24.2, and 12 dB, and IIP3 of -8, -9, and -4 dBm, respectively.  相似文献   

14.
A 2.1-GHz 1.3-V 5-mW fully integrated Q-enhancement LC bandpass biquad programmable in f/sub o/, Q, and peak gain is implemented in 0.35-/spl mu/m standard CMOS technology. The filter uses a resonator built with spiral inductors and inversion-mode pMOS capacitors that provide frequency tuning. The Q tuning is through an adjustable negative-conductance generator, whereas the peak gain is tuned through an input G/sub m/ stage. Noise and nonlinearity analyses presented demonstrate the design tradeoffs involved. Measured frequency tuning range around 2.1 GHz is 13%. Spiral inductors with Q/sub o/ of 2 at 2.1 GHz limit the spurious-free dynamic range (SFDR) at 31-34 dB within the frequency tuning range. Measurements show that the peak gain can be tuned within a range of around two octaves. The filter sinks 4 mA from a 1.3-V supply providing a Q of 40 at 2.19 GHz with a 1-dB compression point dynamic range of 35 dB. The circuit operates with supply voltages ranging from 1.2 to 3 V. The silicon area is 0.1 mm/sup 2/.  相似文献   

15.
Millimeter-wave CMOS design   总被引:6,自引:0,他引:6  
This paper describes the design and modeling of CMOS transistors, integrated passives, and circuit blocks at millimeter-wave (mm-wave) frequencies. The effects of parasitics on the high-frequency performance of 130-nm CMOS transistors are investigated, and a peak f/sub max/ of 135 GHz has been achieved with optimal device layout. The inductive quality factor (Q/sub L/) is proposed as a more representative metric for transmission lines, and for a standard CMOS back-end process, coplanar waveguide (CPW) lines are determined to possess a higher Q/sub L/ than microstrip lines. Techniques for accurate modeling of active and passive components at mm-wave frequencies are presented. The proposed methodology was used to design two wideband mm-wave CMOS amplifiers operating at 40 GHz and 60 GHz. The 40-GHz amplifier achieves a peak |S/sub 21/| = 19 dB, output P/sub 1dB/ = -0.9 dBm, IIP3 = -7.4 dBm, and consumes 24 mA from a 1.5-V supply. The 60-GHz amplifier achieves a peak |S/sub 21/| = 12 dB, output P/sub 1dB/ = +2.0 dBm, NF = 8.8 dB, and consumes 36 mA from a 1.5-V supply. The amplifiers were fabricated in a standard 130-nm 6-metal layer bulk-CMOS process, demonstrating that complex mm-wave circuits are possible in today's mainstream CMOS technologies.  相似文献   

16.
In this paper, two fully integrated voltage-controlled oscillators (VCOs) in a 200-GHz f/sub T/ SiGe bipolar technology are presented. The oscillators use on-chip transmission lines at the output for impedance transformation. One oscillator operates up to 98 GHz and achieves a phase noise of -85dBc/Hz at an offset frequency of 1 MHz. It can be tuned from 95.2 to 98.4 GHz and it consumes 12 mA from a single -5-V supply. The second oscillator operates from 80.5 GHz up to 84.8 GHz with a phase noise of -87dBc/Hz at 1-MHz offset frequency. The output power of both circuits is about -6dBm.  相似文献   

17.
A 20-GHz low-noise amplifier (LNA) with an active balun fabricated in a 0.25-/spl mu/m SiGe BICMOS (f/sub t/=47 GHz) technology was presented by the authors in 2004. The LNA achieves close to 7 dB of gain and a noise figure of 4.9 dB with all ports simultaneously matched to 50 /spl Omega/ with better than -16 dB of return loss. The amplifier is highly linear with an IP/sub 1dB/ of 0 dBm and IIP/sub 3/ of 9 dBm, while consuming 14 mA of quiescent current from a 3.3-V rail, with temperature-compensated biasing. To the authors' knowledge, the LNA delivers the lowest reported noise figure and highest linearity for a silicon implementation of a combined active balun and LNA at 20 GHz, and is the first implementation of an active balun with an LC degenerated emitter-coupled pair. Here we expand on that work, with an analysis of the balun operation and noise optimization of the design.  相似文献   

18.
A 43-Gb/s full-rate clock transmitter chip for SONET OC-768 transmission systems is reported. The IC is implemented in a 0.18-/spl mu/m SiGe BiCMOS technology featuring 120 GHz f/sub T/ and 100 GHz f/sub max/ HBTs. It consists of a 4:1 multiplexer, a clock multiplier unit, and a frequency lock detector. The IC features clock jitter generation of 260 fs rms and dissipates 2.3 W from a -3.6-V supply voltage. Measurement results are compared to a previously reported half-rate clock transmitter designed using the same technology.  相似文献   

19.
A static frequency divider designed in a 210-GHz f/sub T/, 0.13-/spl mu/m SiGe bipolar technology is reported. At a -5.5-V power supply, the circuit consumes 44 mA per latch (140 mA total for the chip, with input-output stages). With single-ended sine wave clock input, the divider is operational from 7.5 to 91.6 GHz. Differential clocking under the same conditions extends the frequency range to 96.6 GHz. At -5.0 V and 100 mA total current (28 mA per latch), the divider operates from 2 to 85.2 GHz (single-ended sine wave input).  相似文献   

20.
A highly integrated transmit integrated circuit intended for dual-band (CELL/PCS) and triple-mode (CDMA/TDMA/AMPS) cellular mobile stations is presented. It features a linear-in-dB gain-control range of 90 dB and provides a high output power of 9 dBm (PCS band) while meeting linearity requirements (-53-dBc ACPR) and achieving the receive-band noise floor of -133 dBm/Hz. It consumes only 130-mA current (3-V supply) in the PCS band. A dynamic-biasing feature results in additional power savings at lower signal levels. The circuit is fabricated in a 30-GHz f/sub T/ BiCMOS technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号