首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
混合遗传算法求解配送车辆调度问题   总被引:2,自引:0,他引:2  
车辆调度优化是物流配送的关键环节。针对有时间窗的车辆调度问题,综合考虑了路网中的交通状况,提出改进的车辆调度模型。并针对这个模型,设计了混合遗传算法,采用自适应策略调整交叉和变异概率,引进有效的交叉和变异算子,并结合模拟退火算法缓解遗传算法的选择压力,避免早熟收敛。仿真结果表明该算法与标准遗传算法相比有更好的性能。  相似文献   

2.
混合量子粒子群算法求解车辆路径问题   总被引:1,自引:0,他引:1  
量子粒子群算法在求解车辆路径问题时一定程度上解决了基本粒子群算法收敛速度不够快的缺点,但是量子粒子群算法仍然存在容易陷入局部最优的缺点。利用混合量子粒子群算法对车辆路径问题进行求解,运用量子粒子群算法对初始粒子群的粒子进行更新,对粒子进行交叉操作,可以提高算法的全局搜索能力,进行变异操作,可以改善算法的局部搜索能力。以Matlab为工具进行仿真实验,实验结果表明改进后的算法在求解车辆路径问题时具有良好的性能,可以避免陷入局部最优,对比量子粒子群算法和遗传算法具有一定的优势。  相似文献   

3.
差分进化混合粒子群算法求解项目调度问题*   总被引:1,自引:0,他引:1  
针对求解资源受限项目调度问题(RCPSP),提出了基于差分进化(DE)的混合粒子群算法(PSODE)。通过在PSO种群和DE种群之间建立一种信息交流机制,使信息能够在两个种群中传递,以避免个体因错误的信息判断而陷入局部最优点。采用标准测试函数和具体算例进行检验,结果表明PSODE算法可以较好地解决RCPS问题。  相似文献   

4.
带时间窗车辆调度问题属于离散NP-hard组合优化问题,传统的粒子群算法在离散域上表现了一定的劣性,对此提出了一种基于粒子碰撞的离散PSO算法来求解该问题。受物体相互碰撞之后物体的速度和位置会发生改变的现象启发,使当前粒子与个体最优和全局最优粒子发生碰撞来更新粒子的位置,以避免传统更新操作中的取整,保证种群的进化能力。采用Solomon’s VRP标准问题集的实例来对算法进行测试,实验结果数据表明了该算法的有效性。  相似文献   

5.
提出一种求解物流配送车辆路径问题的改进粒子群算法。新算法采用粒子群算法产生阶段最优解,利用蛙跳算法对阶段最优解进一步优化。实验表明,此算法是解决车辆路径问题的一个有效算法。  相似文献   

6.
针对高校教室调度问题进行了研究,综合考虑教室集中时间利用率和学生需求,采用三元组方式,用任务表示课程,用设备表示不同类型的教室。据此,教室排课问题被描述为一类以最小化Cmax与滞后时间和为调度目标,具有机器适用限制的并行机调度问题。然后结合问题特性,建立对应的运筹学调度模型,并运用混合粒子群算法求解该类调度问题。最后仿真结果表明实现了所讨论的两个优化调度目标,获得了满意解;同时通过与其他算法解的比较,得出混合粒子群算法非常适合求解这里所讨论的教室排课问题这一结论。  相似文献   

7.
车辆优化调度是提高物流企业运营效益的重要因素,针对标准粒子群优化算法存在的不足,提出一种改进粒子群算法(IPSO)的物流配送车辆调度优化方法。建立物流配送车辆调度优化的数学模型,将车辆与车辆路径编码成粒子,通过粒子之间的协作找到最优物流配送车辆调度优化方案,并对粒子群算法存在的不足进行了相应的改进,最后给出仿真实验对其性能进行测试。实验结果表明,IPSO算法不仅加快了物流配送车辆调度优化问题求解的速度,而且获得了最优解的概率,具有比其他调度算法更明显的优势。  相似文献   

8.
改进的粒子群优化算法求解车辆调度问题   总被引:4,自引:1,他引:4  
采用对基本粒子群优化算法引入遗传操作来提高种群多样性,这样虽能避免产生局部极小,但收敛速度会降低,通过加入收缩因子来达到两者的均衡。优化和仿真结果表明改进算法性能更优,能有效地解决公交车辆的智能排班问题。  相似文献   

9.
物流配送车辆调度问题是指安排有限的车辆有效地完成配送任务。优化目标是在满足客户需求和车辆能力约束的条件下,找出配送成本较低的配送车辆调度方案。由于配送过程受客户位置、配送车辆限制等多种因素影响,导致车辆的调度问题十分复杂。参照经典车辆路径问题模型,考虑了车辆配送里程和用户数等限制,建立了双向车辆调度问题的数学模型。在标准粒子群算法的基础上,引入爬山操作,增加了粒子群的多样性,提高了算法的局部搜索能力,并设计了基于改进粒子群算法的物流配送车辆调度算法,有效地解决了物流配送车辆的优化调度问题。  相似文献   

10.
针对资源受限的项目调度问题,将粒子群优化算法与拟牛顿优化算法相结合,提出了一种混合粒子群算法。本算法利用粒子群算法求得优化解,然后利用拟牛顿方法对所得到的解进行局部优化,以尽量达到或接近全局最优点。结果表明,本算法能够有效地求解大规模项目调度问题,具有较好的应用价值。  相似文献   

11.
求解车辆路径问题的离散粒子群算法   总被引:5,自引:2,他引:5  
考虑车辆行驶时间和顾客服务时间的不确定性,建立了以车辆配送总费用最小为目标的机会约束规划模型,将其进行清晰化处理,使之转化为一类确定性数学模型,并构造了求解该问题的一种离散粒子群算法。算法重新定义了粒子的运动方程及其相关离散量运算法则,并设计了排斥算子来维持群体的多样性。与标准遗传算法和粒子群算法比较,该算法能够有效避免算法陷入局部最优,取得了满意的结果。  相似文献   

12.
车辆路径问题的改进混合粒子群算法研究   总被引:2,自引:0,他引:2  
王正初 《计算机仿真》2008,25(4):267-270
针对各种启发式算法在求车辆路径问题(VRP)中的缺陷,提出了改进的混合粒子群算法(MHPSO)的求解方法.分析了基于速度-位置更新策略传统粒子群算法在解决离散的和组合优化问题的不足.考虑到算法在求解过程中种群多样性的损失过快,引进了种群的多样性测度参数-平均粒距,以保持种群的多样性.同时利用混沌运功的随机性、遍历性和规律性等特性,采用混沌初始化粒子编码.详细讨论了该算法在车辆路径问题中的求解策略.针对同一个实例,将改进的混合粒子群算法与遗传算法从多个角度进行比较.仿真结果表明,论文所提出的算法性能较好,可以快速、有效求得车辆路径问题的优化解或近似优化解.  相似文献   

13.
文中研究了具有NP难度的混合车辆路径问题(Mixed Capacitated General Routing Problem,MCGRP),其是在基本车辆路径问题(Vehicle Routing Problem,VRP)的基础上通过添加限载容量约束及弧上的用户需求而衍生的。给定一列车辆数不限的车队,使车辆从站点出发向用户提供服务,服务完用户需求后仍返回站点;规定每辆车的总载重不能超过其载重量,且每个需求只能被一辆车服务且仅服务一次。MCGRP旨在求解每辆车的服务路线,使得在满足以上约束条件的情况下所有车辆的旅行消耗之和最小。混合车辆路径问题具有较高的理论价值和实际应用价值,针对该问题提出了一种高效的混合进化算法。该算法采用基于5种邻域算符的变邻域禁忌搜索来提高解的质量,并通过一种基于路径的交叉算符来继承解的优异性,从而有效地加速算法的收敛。在一组共计23个经典算例上的实验结果表明,该混合进化算法在求解混合车辆路径问题时是非常高效的。  相似文献   

14.
为求解带时间窗车辆路径问题,提出一种混合蚁群优化算法,利用两个隔离的种群同时进化的方式,有效避免了两种算法的缺点,种群Ⅰ应用蚁群算法可以丰富解得多样性,种群Ⅱ则应用粒子群算法来强化进化过程.种群Ⅰ通过局部搜索、复制、重组和选择等操作来保持种群广泛搜索的能力,种群Ⅱ则依靠复制、局部优化、交叉和选择等操作以快速获得高质量解并经常更新得到的解.对100个基准问题进行仿真测试,实验结果表明,与其他算法相比,利用蚁群粒子群混合优化算法能够快速有效地获得近似最优解.  相似文献   

15.
采用借鉴遗传算法的编码、交叉和变异操作的遗传微粒群算法对带车辆能力约束的车辆路径优化问题进行求解。设计了符合微粒群算法进化机制的变异算子和改进顺序交叉算子以满足遗传微粒群算法中三条染色体交叉与变异的需要。对多个基准测试实例仿真计算表明算法有效且具有收敛速度快和精度高的优点。  相似文献   

16.
周慧  周良  丁秋林 《计算机科学》2015,42(6):204-209
针对物流配送中动态车辆路径优化问题,综合考虑动态需求、路网影响、车辆共享、时间窗以及客户满意度,建立了多目标动态数学规划模型,该模型能更好地描述现代物流配送问题.同时,提出一种两阶段求解策略,第一阶段采用多目标混合粒子群优化算法获取预优化阶段Pareto最优解,采用改进的粒子状态更新策略并融合模拟退火操作提升粒子群搜索性能,采用自适应网格技术保持解的分布性;第二阶段对客户的需求变化采用贪婪插入和变邻域搜索进行实时路径调整.实验表明,该算法在解空间中有更好的探寻能力,并能快速收敛到全局最优,满足动态路径优化实时性要求.  相似文献   

17.
二次分配问题的粒子群算法求解   总被引:1,自引:0,他引:1  
文章采用了一种新的算法,即粒子群算法(PSO)去解决二次分配问题(QAP),构造了该问题的粒子表达方法,建立了此问题的粒子群算法模型,并对不同的二次分配问题算例进行了实验,结果表明:粒子群算法可以快速、有效地求得二次分配问题的优化解,是求解二次分配问题的一个较好方案。PSO算法在很多连续优化问题中已经得到较成功的应用,而在离散域上的研究和应用还很少。文章应用PSO算法解决QAP问题是一种崭新的尝试,它对于将PSO算法应用于离散问题,特别是组合优化问题无疑具有启发性,并为进一步深入研究奠定了基础。  相似文献   

18.
对带时间窗的车辆路径问题进行研究,建立以最小化车辆数量和行驶路程为目标的多目标数学模型,提出一种结合改进差分进化算法和变邻域下降搜索的基于Pareto支配的混合差分进化算法。首先重新定义了个体的生成方式。其次,结合双种群策略和变邻域下降搜索技术来平衡算法的全局探索能力和局部开发能力,并在搜索过程中用随机个体替代种群中的重复个体,维持种群的多样性。然后引入Pareto支配的概念来评价个体的优劣性,并采用擂台法则构造非支配解集。最后对18个不同规模的Solomon算例的求解结果表明,算法在行驶路程和车辆数量上的求解质量比人工蜂群算法分别平均提高了2.04%和14.95%,且与已知最优解相比,在车辆数量的求解质量上平均提高了14.53%,验证了所提算法的有效性。  相似文献   

19.
基于城市配送的单车线路算法研究   总被引:5,自引:1,他引:5  
对单车线路优化问题进行重点阐述。求解过程采用了最节约插值法与混合遗传算法,较好地解决了单车配送线路优化问题。通过实例数据测试,表明两种算法的结合优化效果显著。  相似文献   

20.
高速多媒体网络中的路由问题是有QoS约束的路由问题,多受限的路由问题是一个NP完全问题.本文提出了一种解决多受限QoS路由问题的改进微粒群算法.该算法利用记忆库来动态调整惯性权重值,加快了算法的收敛速度.同时结合进化、灾变机制避免了算法陷入局部极值的问题.在列出改进算法的具体步骤基础上,通过实例证明了算法的有效性,使多受限QoS路由优化问题很好地得到了解决.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号