首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An arch-shaped beam with different configurations under electrostatic loading experiences either the direct pull-in instability or the snap-through first and then the pull-in instability. When the pull-in instability occurs, the system collides with the electrode and adheres to it, which usually causes the system failure. When the snap-through instability occurs, the system experiences a discontinuous displacement to flip over without colliding with the electrode. The snap-through instability is an ideal actuation mechanism because of the following reasons: (1) after snap-through the system regains the stability and capability of withstanding further loading; (2) the system flips back when the loading is reduced, i.e. the system can be used repetitively; and (3) when approaching snap-through instability the system effective stiffness reduces toward zero, which leads to a fast flipping-over response. To differentiate these two types of instability responses for an arch-shaped beam is vital for the actuator design. For an arch-shaped beam under electrostatic loading, the nonlinear terms of the mid-plane stretching and the electrostatic loading make the analytical solution extremely difficult if not impossible and the related numerical solution is rather complex. Using the one mode expansion approximation and the truncation of the higher-order terms of the Taylor series, we present an analytical solution here. However, the one mode approximation and the truncation error of the Taylor series can cause serious error in the solution. Therefore, an error-compensating mechanism is also proposed. The analytical results are compared with both the experimental data and the numerical multi-mode analysis. The analytical method presented here offers a simple yet efficient solution approach by retaining good accuracy to analyze the instability of an arch-shaped beam under electrostatic loading.  相似文献   

2.
In this work, we investigate the structural behavior of a micro-electromechanical system arch microbeam actuated by electric fringing-fields where the electrodes are located at both side of the microbeam. In this particular configuration, the electrostatic actuating force is caused by the asymmetry of the fringing electric fields acting in a direction opposite to the relative deflection of the microbeam. A reduced-order model is derived for the considered system using the so-called Galerkin decomposition and assuming linear undamped mode shapes of a straight beam as basis functions in the decomposition process. A static analysis is performed to investigate the occurrence of any structural instability. The eigenvalue problem is then investigated to calculate the fundamental as well as higher natural frequencies variation of the microbeam with the applied DC load. A bifurcation analysis is then implemented to derive a criterion for whether symmetric or asymmetric bifurcation is occurring during the static structural instability. The results show elimination of the so-called pull-in instability in this kind of systems as compared to the regular case of parallel-plates electrostatic actuation. The bifurcation analysis shows that the arch goes for asymmetric bifurcation (symmetry breaking) with increase in initial elevation without the occurrence of symmetric bifurcation (snap-through) for any initial elevation.  相似文献   

3.

In the present research, stability and static analyses of microelectromechanical systems microstructure were investigated by presenting an out-of-plane structure for a lumped mass. The presented model consists of two stationary electrodes in the same plane along with a flexible electrode above and in the middle of the two electrodes. The nonlinear electrostatic force was valuated via numerical methods implemented in COMSOL software where three-dimensional simulations were performed for different gaps. The obtained numerical results were compared to those of previous research works, indicating a good agreement. Continuing with the research, curves of electrostatic and spring forces were demonstrated for different scenarios, with the intersection points (i.e., equilibrium points) further plotted. Also drawn were plots of deflection versus voltage for different cases and phase and time history curves for different values of applied voltage followed by introducing and explaining pull-in and pull-out snap-through voltages in the system for a specific design. It is worth noting that, at voltages between the pull-in and pull-out snap-through voltages, the system was in bi-stable state. Based on the obtained results, it was observed that the gap between the two electrodes and the applied voltage play significant roles in the number and type of the equilibrium points of the system.

  相似文献   

4.
When a voltage source drives an electrostatic parallel plate actuator, the well-known pull-in instability limits the range of displacement to 1/3 of the gap. Different strategies have been reported to overcome this limitation. More recently, experimental results have been presented using a capacitor in series with the actuator. Nevertheless, this strategy requires higher voltage than the pull-in voltage value to achieve full range of travel. In order to reduce the operating voltage, a switched-capacitor configuration has been also proposed. In this paper, two different approaches are introduced to control charge in the actuator by means of current driving. Theoretical equations derived for each method show that full range of travel can be achieved without voltage penalty. Both approaches are based on the use of current pulses injecting the required amount of charge to fix the position of the movable plate. Experimental measurements, showing that displacement beyond the pull-in point can be achieved, are in good agreement with the theoretical and the predicted simulated behavior  相似文献   

5.
This paper presents a generalized model that describes the behavior of micromachined electrostatic actuators in conducting liquids and provides a guideline for designing electrostatic actuators to operate in aqueous electrolytes such as biological media. The model predicts static actuator displacement as a function of device parameters and applied frequency and potential for the typical case of negligible double-layer impedance and dynamic response. Model results are compared to the experimentally measured displacement of electrostatic comb-drive and parallel-plate actuators and exhibit good qualitative agreement with experimental observations. The model is applied to show that the pull-in instability of a parallel-plate actuator is frequency dependent near the critical frequency for actuation and can be eliminated for any actuator design by tuning the applied frequency. In addition, the model is applied to establish a frequency-dependent theoretical upper bound on the voltage that can be applied across passivated electrodes without electrolysis.  相似文献   

6.
一种基于静电排斥力的纵向微驱动器研究   总被引:1,自引:0,他引:1  
为了消除静电塌陷对静电吸引力微驱动器冲程的限制,设计了一种基于静电排斥力的纵向微驱动器实现结构,其可动电极和固定电极在工作过程中互相远离,可以从根本上解决静电塌陷问题,且冲程不受牺牲层厚度的限制;借助Maxwell2D软件,采用数值仿真方法,研究了微驱动器结构参数对静电排斥力大小的影响.数值仿真结果表明,梳齿电极水平间距,固定/可动梳齿电极宽度和两者的比值都是影响静电排斥力大小的关键因素.  相似文献   

7.
Circular micro plates are used in the many Microelectromechanical devices as micropumps and micro pressure sensors. All such systems exhibit a static instability phenomenon (Divergence) which is known as the “pull-in” instability. In this paper a distributed model was used to investigate the pull-in instability of a circular micro plate subjected to non-uniform electrostatic pressure and uniform hydrostatic pressure. The non-linear governing equation was derived and in order to linearize the obtained governing equations, step by step linearization method was used, then the linear system of equation was solved by finite difference method. The obtained results for only electrostatic actuation were compared with the existing results and good agreement has been achieved. There are exist two method of actuation. The pull-in voltages for these two actuation mechanism were investigated and the obtained results exhibited different effects on each actuation mechanism.  相似文献   

8.
9.
This work presents a systematic analysis of electrostatic actuators driven by multiple uncoupled voltage sources. The use of multiple uncoupled voltage sources has the potential of enriching the electromechanical response of electrostatically actuated deformable elements. This in turn may enable novel MEMS devices with improved and even new capabilities. It is therefore important to develop methods for analyzing this class of actuators. Pull-in is an inherent instability phenomenon that emanates from the nonlinear nature of the electromechanical coupling in electrostatic actuators. The character of pull-in in actuators with multiple uncoupled voltage sources is studied, and new insights regarding pull-in are presented. An analytical method for extracting the pull-in hyper-surface by directly solving the voltage-free K-N pull-in equations derived here, is proposed. Solving simple but interesting example problems illustrate these new insights. In addition, a novel /spl alpha/-lines numerical method for extracting the pull-in hyper-surface of general electrostatic actuators is presented and illustrated. This /spl alpha/-lines method is motivated by new features of pull-in, that are exhibited only in electrostatic actuators with multiple uncoupled voltage sources. This numerical method permits the analysis of electrostatic actuators that could not have been analyzed by using current methods.  相似文献   

10.
The nonlinear dynamics of the parallel-plate electrostatically driven microstructure have been investigated with the objective of finding a dynamic voltage drive suitable for full-gap operation. Nonlinear dynamic modeling with phase-portrait presentation of both position and velocity of a realistic microstructure demonstrate that instability is avoided by a timely and sufficient reduction of the drive voltage. The simulation results are confirmed by experiments on devices fabricated in an epi-poly process. A 5.5-V peak harmonic drive voltage with frequency higher than 300 Hz allows repetitive microstructure motion up to 70% of gap without position feedback. The results of the analysis have been applied to the design of a new concept for positioning beyond the static pull-in limitation that does include position feedback. The measured instantaneous actuator displacement is compared with the desired displacement setting and, unlike traditional feedback, the voltage applied to the actuator is changed according to the comparison result between two values. The "low" level is below the static pull-in voltage and opposes the motion, thus bringing the structure back into a stable regime, while the "high" level is larger than the static pull-in voltage and will push the structure beyond the static pull-in displacement. Operation is limited only by the position jitter due to the time delay introduced by the readout circuits. Measurements confirm flexible operation up to a mechanical stopper positioned at 2 /spl mu/m of the 2.25 /spl mu/m wide gap with a 30 nm ripple.  相似文献   

11.
Recently proposed optical subsystems utilizing microelectromechanical system (MEMS) components are being developed for use in optical crossconnects, add-drop multiplexers, and spectral equalizers. Common elements to these subsystems are electrostatically actuated micromechanical mirrors that steer optical beams to implement the subsystem functions. In the past, feedback control methods were used to obtain precise mirror orientations to minimize loss through optical switch fabrics or to stabilize attenuation through spectral equalizers. However, the mirror tilt angle range is limited because of inherent instability beyond a critical tilt angle (pull-in angle), and the usual feedback schemes do not counteract this effect. This work presents a feedback control method to enable operation of electrostatic micromirrors beyond the pull-in angle, yielding advantages including greater scalability of switch arrays and increased dynamic range of optical attenuators. Both static and dynamic tilting behaviors of electrostatic micromirrors under the feedback control are studied. In addition, a practical implementation of the feedback control system by using linear voltage control law is developed. A voltage slightly larger than the pull-in voltage is first applied when the mirror is at small angle positions, and the voltage is then linearly reduced as the mirror approaches the desired position. Experimental measurements, showing that tilt angles beyond the pull-in point can be achieved, are in good agreement with theoretical analysis.  相似文献   

12.
采用静电力驱动质量块产生等效加速度信号实现了微机械加速度计的自检测功能。分析了平板驱动电极的静电驱动力、吸合电压以及稳定驱动位移条件。采用光学测试技术测试了驱动电压和驱动位移的关系,吸合电压,证实了理论分析。利用理论分析公式计算了低驱动电压情况下的驱动位移。结果表明在10~15V的直流驱动电压下能产生等效于1g加速度的输出。  相似文献   

13.
An analysis of the dynamic characteristics of pull-in for parallel-plate and torsional electrostatic actuators is presented. Traditionally, the analysis for pull-in has been done using quasi-static assumptions. However, it was recently shown experimentally that a step input can cause a decrease in the voltage required for pull-in to occur. We propose an energy-based solution for the step voltage required for pull-in that predicts the experimentally observed decrease in the pull-in voltage. We then use similar energy techniques to explore pull-in due to an actuation signal that is modulated depending on the sign of the velocity of the plate (i.e., modulated at the instantaneous mechanical resonant frequency). For this type of actuation signal, significant reductions in the pull-in voltage can theoretically be achieved without changing the stiffness of the structure. This analysis is significant to both parallel-plate and torsional electrostatic microelectromechanical systems (MEMS) switching structures where a reduced operating voltage without sacrificing stiffness is desired, as well as electrostatic MEMS oscillators where pull-in due to dynamic effects needs to be avoided.  相似文献   

14.
In this paper, the dynamic characteristics and pull-in instability of electrostatically actuated microbeams which convey internal fluids are investigated. A theoretical model is developed by considering the elastic structure, laminar flow and electrostatic field to characterize the dynamic behavior. In addition, the energy dissipation induced by the fluid viscosity is studied through analyzing the fluid–structure interactions between the laminar fluid flow and oscillating microbeam by comprehensively considering the effects of velocity profile and fluid viscosity. The results indicate that the system is subjected to both the pull-in instability and the fluid-induced instability. It is demonstrated that as the flow velocity increases, both the static pull-in voltage and the dynamic one decrease for clamped–clamped microbeams while increase for clamped-free microbeams. It is also shown that the applied voltage and the steady flow can adjust the resonant frequency. The perturbation viscous flow caused by the vibration of microbeam is manifested to result in energy dissipation. The quality factor decreases with the increment of both the mode order and flow velocity. However, when the oscillating flow dominates, the flow velocity has no obvious effect.  相似文献   

15.
A novel InP-based microactuator, which is actuated by electrostatic means, has been proposed, designed, fabricated, and characterized for tuning applications in the 1.5 μm wavelength domains. Its structural design is based on the global optimization method. The tunable device is a big square membrane, which is supported by four identical cantilever beams. The three alternating layers Si3N4/SiO2 as a distributed Bragg reflector (DBR) mirror, which were previously reported, have been formed on the top of the membrane. Based on the optical interferometric measurements, the proposed Fabry–Perot filter has demonstrated a maximum deflection of ∼321 nm with an applied voltage up to 12 V, an average sensitivity of ∼27 nm/V, a pull-in voltage of 12.7 V, and a release voltage of 10.7 V. It is also observed that its natural frequency is 88.4 kHz. This measured frequency implies that the tuning speed of our device is fast for optical operations within 0.01 ms. In addition, our device’s mirror remains so flat with a good planarity of 0.07°, which is strictly required for the filter’s optical performance. This optical performance can be achieved, when the micromachined structure has a tuning displacement up to ∼38 nm with a low tuning voltage up to 5 V. When compared with the finite element models (FEM), which were generated by the commercialized software, Coventor™, our experimental results agree well in terms of the natural frequency, pull-in voltage and deflections. Thus, our tunable filter, which is based on the optimized design, enables better performances including reduced actuation voltages, large pull-in voltage, improved device reliability, and fast switching times. Our device can also quickly snap back to the original position. In addition, the undesired spring-softening effect has been reduced.  相似文献   

16.
We develop novel closed-form empirical relations to estimate the static pull-in parameters of electrostatically actuated tapered width microcantilever beams. A computationally efficient single degree-of-freedom model is employed in the setting of Ritz energy technique to extract the static pull-in parameters of the distributed electromechanical model that takes into account the effects of fringing field capacitance. The accuracy of this single-dof model together with the variable-width equivalent of the Palmer’s fringing model is established through a comparison with 3D finite element simulations. A unique surface fitting model is proposed to characterize the variations of both the pull-in displacement and pull-in voltage, over a realistically wide range of system parameters. Optimum coefficients of the proposed surface fitting model are obtained using nonlinear regression analysis. Empirical estimates of pull-in parameters are validated against finite element simulations, and available experimental and numerical data. An excellent agreement indicates that the proposed relationships are sufficiently accurate to be safely used for the electromechanical design of tapered microcantilever beams.  相似文献   

17.
Nonlinear dynamic investigation of electrostatically actuated micro-electro-mechanical-system (MEMS) microcantilever structures is presented. The nonlinear analysis aims to better quantify, than the linear model, the instability threshold associated with electrostatically actuated MEMS structures, where the pull-in voltage of the microcantilever is determined using a phase portrait analysis of the microsystem. The microcantilever is modeled as a lumped mass-spring system. The nonlinear electrostatic force is incorporated into the lumped microsystem through an equivalent area of the microcantilever for a given electrostatic potential. Electro-mechanical force balance plots are obtained for various electrostatic potentials from which the static equilibrium positions of the microcantilever are obtained and the respective conservative energy values are determined. Subsequently, phase portrait plots are obtained for the corresponding energy values from which the pull-in voltage is estimated for the microsystem. This pull-in voltage value is in good agreement with the previously published results for the same geometric and material parameters. The results obtained for linear electrostatic models are also presented for comparison.  相似文献   

18.
Controlling the charge, rather than the voltage, on a parallel-plate, electrostatic actuator theoretically permits stable operation for all deflections. Practically, we show that, using charge control, the maximum stable deflection is limited by 1) charge pull-in, in which the actuator snaps due to the presence of parasitic capacitance and 2) tip-in, in which the rotation mode becomes unstable. This work presents a circuit that controls the amount of charge on a parallel-plate, electrostatic actuator. This circuit reduces the sensitivity to parasitic capacitance, so that tip-in is the limiting instability. A small-signal model of the actuator is developed and used to determine the circuit bandwidth and gain requirements for stable deflections. Four different parallel-plate actuators have been designed and tested to verify the charge control technique as well as to verify charge pull-in, tip-in, and the bandwidth requirements. One design travels 83% of the gap before tip-in. Another design can only travel 20% of the gap before tip-in, regardless of whether voltage control or charge control is used.  相似文献   

19.
Micro-gyroscopes are usually driven into resonance so that the sensitivity and resolution can be enhanced. However, if any substantial vibration of the gyroscope base, over which the seismic proof mass is seated, was present, then the preset resonant frequency would be altered and the performances of the gyroscopes could be much degraded. In this paper, an innovative three degree-of-freedom (DOF) isolation system is proposed to attenuate the undesirable vibrations caused by the ambient environments. The mathematic model of the proposed 3-DOF micro-machined isolation system is established and analyzed such that the transfer function of transmissibility is obtained. The pull-in instability and associated pull-in voltage for the actuators of the isolation system are numerically unveiled so that the interval of the applied voltage to generate the electrostatic control force can be set to ensure the stability of the suspension system. In addition, a fuzzy logic proportion and derivative (PD) controller is synthesized for disturbance rejection. Five sensing electrodes, in cooperation with the isolator, are used to provide the feedback signals of the relative displacements of the proof mass with respect to the base, i.e., pitch, yaw and lateral linear displacement. Ten tuning electrodes are utilized to generate the required electrostatic forces to preserve the seismic proof mass from external disturbance. In comparison with the traditional PD action, the proposed fuzzy logic PD control strategy is verified by intensive simulations to illustrate its superior vibration isolation capability.  相似文献   

20.
Electromechanical Model of Electrically Actuated Narrow Microbeams   总被引:2,自引:0,他引:2  
A consistent one-dimensional distributed electromechanical model of an electrically actuated narrow microbeam with width/height between 0.5–2.0 is derived, and the needed pull-in parameters are extracted with different methods. The model accounts for the position-dependent electrostatic loading, the fringing field effects due to both the finite width and the finite thickness of a microbeam, the mid-plane stretching, the mechanical distributed stiffness, and the residual axial load. Both clamped–clamped and clamped-free (cantilever) microbeams are considered. The method of moments is used to estimate the electrostatic load. The resulting nonlinear fourth-order differential equation under appropriate boundary conditions is solved by two methods. Initially, a one-degree-of-freedom model is proposed to find an approximate solution of the problem. Subsequently, the meshless local Petrov–Galerkin (MLPG) and the finite-element (FE) methods are used, and results from the three methods are compared. For the MLPG method, the kinematic boundary conditions are enforced by introducing a set of Lagrange multipliers, and the trial and the test functions are constructed using the generalized moving least-squares approximation. The nonlinear system of algebraic equations arising from the MLPG and the FE methods are solved by using the displacement iteration pull-in extraction (DIPIE) algorithm. Three-dimensional FE simulations of narrow cantilever and clamped–clamped microbeams are also performed with the commercial code ANSYS. Furthermore, computed results are compared with those arising from other distributed models available in the literature, and it is shown that improper fringing fields give inaccurate estimations of the pull-in voltages and of the pull-in deflections. 1641  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号