首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
AISI 316L奥氏体不锈钢低温离子-气体渗碳工艺优化   总被引:1,自引:1,他引:0  
周梦飞  赵程 《表面技术》2017,46(2):159-164
目的将低温离子-气体乙炔渗碳应用于AISI 316L奥氏体不锈钢表面硬化处理,同时探讨其硬化处理的最优工艺参数及优化效果。方法采用离子轰击去除不锈钢表面钝化膜并活化其表面,再进行低温气体乙炔渗碳,实验过程使用脉冲式供气循环处理方式。进行温度梯度实验,寻找渗碳处理的临界温度。并采用正交试验法设计3因素3水平共9组实验,分析气体比例、离子轰击时间、保温压强3个因素对渗碳层硬度和厚度产生的影响,以期得到不锈钢低温离子-气体乙炔渗碳优化工艺。通过对经过最优化工艺处理过后的不锈钢硬化层组织、成分、厚度、硬度、耐磨性、耐蚀性能的研究分析,验证此工艺对AISI 316L奥氏体不锈钢硬化处理的适用性。结果处理温度为540℃时渗碳层有碳的铬化物析出;离子轰击时间对渗碳层硬度影响最大,保温压强对硬化层厚度影响最明显。在硬化处理温度为520℃,V(H2)∶V(C2H2)=1∶1,渗碳压强为-0.02 MPa,离子轰击时间为20 min时,316L奥氏体不锈钢离子-气体乙炔渗碳效果最优。经优化工艺处理后不锈钢硬化层厚度达到30μm左右,表面硬度达到838HV0.05,耐蚀性和耐磨性能等都显著提高。结论低温离子-气体乙炔渗碳硬化处理适用于AISI 316L奥氏体不锈钢,其处理最合适温度为520℃。经优化工艺处理后的不锈钢具有较高的硬度、厚度,良好的硬度梯度,高耐蚀性能及高耐磨性能。  相似文献   

2.
奥氏体不锈钢表面低温离子硬化处理后,其表面覆盖了一层成分复杂、结合牢固的薄膜,不仅影响了不锈钢表面的外观质量,而且还影响到其表面的耐蚀性能.对奥氏体不锈钢低温离子渗碳的试样进行电化学亮化处理,并对亮化处理前后硬化层的表面形貌、表面粗糙度、组织结构、显微硬度及耐蚀性能做了比较.结果表明,虽然亮化处理后不锈钢表面硬化层的厚度和硬度略有减小,但却能显著提高其表面的耐蚀性能,表面较亮化处理前更加光滑,Ra由0.27μm减小到0.09μm.因此,在奥氏体不锈钢表面低温离子硬化处理后再进行一次表面亮化处理是十分必要的.  相似文献   

3.
奥氏体不锈钢低温离子渗碳处理是一种能在不降低耐蚀性能的前提下显著提高其表面硬度的有效方法。本文研究了奥氏体不锈钢低温离子渗碳气体比例及炉内压强对渗碳层硬度及厚度的影响。试验结果表明,炉内气体比例及压强对渗碳层硬度及厚度都有较大的影响。当氢气与甲烷比例为(20~30):1、气体压强为400 Pa时,渗碳层的硬度最高,硬化层最厚。  相似文献   

4.
采用离子轰击去除不锈钢表面的钝化膜,并活化试样的表面,然后再进行低温气体渗碳处理。经过反复几次循环处理后,实现AISI 316L奥氏体不锈钢表面低温硬化处理。利用显微硬度计测试表面硬度、硬度梯度;用光学显微镜观察硬化层横截面的显微组织。结果表明,在渗碳温度为440~590 ℃内,硬化层的表面硬度及厚度与渗碳温度和循环处理周期成正比。温度在440~510 ℃内,硬化层增厚相对比较缓慢;当渗碳温度超过510 ℃后,硬化层的厚度增速加快。在440~530 ℃之间,硬化层表面硬度基本保持不变,在530 ℃之后,硬化层的表面硬度继续增加。在3~7个循环处理周期内,硬化层厚度增长速度较快,在第7个循环处理周期后,硬化层厚度增长速度变慢。不降低耐蚀性能的奥氏体不锈钢低温渗碳硬化处理的临界温度为530 ℃。  相似文献   

5.
AISI 304奥氏体不锈钢低温离子渗碳工艺优化研究   总被引:1,自引:0,他引:1  
用正交实验法研究了AISI 304奥氏体不锈钢低温离子渗碳工艺。结果表明,优化后的奥氏体不锈钢低温离子渗碳工艺参数为渗碳温度500℃、C3H8:H2=1:30、氩气流量20 ml/min、渗碳时间6 h。用优化工艺参数处理的奥氏体不锈钢表面可获得单一的Sc相组织,硬度高达780 HV0.05。  相似文献   

6.
采用离子轰击去除不锈钢表面钝化膜并活化表面,然后在不同的渗碳温度条件下,用氢气和乙炔混合气体对AISI 316L奥氏体不锈钢进行硬化处理,研究了渗碳温度对不锈钢渗碳层组织和性能的影响。结果表明:AISI 316L奥氏体不锈钢低温离子-乙炔气体渗碳的临界温度为540℃。在440~540℃温度范围内,渗碳层中具有单一γc相结构,无铬的碳化物析出,硬化层厚度与硬度均随渗碳温度的升高而增加。当渗碳温度超过540℃,渗碳层中不仅含有γc相,而且会有新相生成(如Cr23C6、Cr7C3、Cr C、Fe3C、Fe2C),从而引起不锈钢耐蚀性能降低。  相似文献   

7.
用正交实验法研究了AISI304奥氏体不锈钢低温离子渗碳工艺。结果表明,优化后的奥氏体不锈钢低温离子渗碳工艺参数为渗碳温度500℃、C3H8:H2=1:30、氩气流量20ml/min、渗碳时间6h。用优化工艺参数处理的奥氏体不锈钢表面可获得单一的Sc相组织,硬度高达780HV0.05。  相似文献   

8.
杜威  赵程 《金属热处理》2014,39(7):116-120
研究了低温离子渗氮、离子氮碳共渗和离子渗碳硬化处理对AISI 420马氏体不锈钢的显微组织、表面硬度、耐蚀性、耐磨性的影响。结果表明,离子渗氮、氮碳共渗和离子渗碳处理都可提高马氏体不锈钢的表面硬度;经不同工艺处理后的试样,除500 ℃×4 h渗氮工艺外,其他不锈钢试样表面的耐蚀性均未出现明显降低,当渗氮温度过高(500 ℃)时,由于CrN的析出使得渗氮层的耐蚀性显著下降;磨损试验的结果表明,离子渗碳处理后硬化层的耐磨性最佳。  相似文献   

9.
奥氏体不锈钢的低温离子氮碳共渗研究   总被引:7,自引:1,他引:7  
利用低压等离子体辉光放电技术对AISI 316奥氏体不锈钢进行低温离子氮碳共渗硬化处理,处理是在不降低奥氏体不锈钢耐蚀性能的前提下进行的。处理后的奥氏体不锈钢属于一种无氮化铬或碳化铬析出的氮和碳的过饱和固溶体(S相结构)。这种渗入钢中的过饱和氮和碳元素引起奥氏体晶格发生畸变,使渗层的硬度和耐磨性都有较大幅度的提高。由于处理后的奥氏体不锈钢渗层内的最大含氮量和最大含碳量分别出现在不同的深度,因而使离子氮碳共渗处理后的奥氏体不锈钢既有离子渗氮处理的高硬度,又有离子渗碳处理后的高的渗层厚度和良好的硬度梯度等特点。  相似文献   

10.
低温盐浴渗碳、等离子渗碳等低温渗碳工艺在提高奥氏体不锈钢表面强度的同时,会降低其耐蚀性能。为克服上述缺陷,开发了一种高效兼顾表面强度与耐蚀性能的表面强化工艺的低温气体渗碳技术。采用该工艺对304、316奥氏体不锈钢进行渗碳处理,并对得到的奥氏体不锈钢低温渗碳组织性能进行分析。结果表明,随着温度升高,试样表面强度提高,而腐蚀性能下降。470℃是兼顾强化与耐蚀性能的低温气体渗碳工艺参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号