首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the effect of CO2 and H2O on NOx storage and reduction over a Pt–Ba/γ-Al2O3 (1 wt.% Pt and 30 wt.% Ba) catalyst is shown. The experimental results reveal that in the presence of CO2 and H2O, NOx is stored on BaCO3 sites only. Moreover, H2O inhibits the NO oxidation capability of the catalyst and no NO2 formation is observed. Only 16% of the total barium is utilized in NO storage. The rich phase shows 95% selectivity towards N2 as well as complete regeneration of stored NO. In the presence of CO2, NO is oxidized into NO2 and more NOx is stored as in the presence of H2O, resulting in 30% barium utilization. Bulk barium sites are inactive in NOx trapping in the presence of CO2·NH3 formation is seen in the rich phase and the selectivity towards N2 is 83%. Ba(NO3)2 is always completely regenerated during the subsequent rich phase. In the absence of CO2 and H2O, both surface and bulk barium sites are active in NOx storage. As lean/rich cycling proceeds, the selectivity towards N2 in the rich phase decreases from 82% to 47% and the N balance for successive lean/rich cycles shows incomplete regeneration of the catalyst. This incomplete regeneration along with a 40% decrease in the Pt dispersion and BET surface area, explains the observed decrease in NOx storage.  相似文献   

2.
Pt–Ba–Al2O3 active and selective for NOx storage and selective reduction to N2 has been prepared and tested. Characterization of the parent Al2O3, Pt–Al2O3 and Ba–Al2O3 materials, as well as of Pt–Ba–Al2O3 catalyst in the oxidized, reduced and sulphated state has been performed by FT-IR spectroscopy of low-temperature adsorbed carbon monoxide and of adsorbed acetonitrile. XRD, TEM and XPS analyses have also been performed. Evidence for the predominance of Ba species, which are highly dispersed on the alumina support surface, and may be carbonated or sulphated, has been provided. Competitive interaction of Pt and Ba species with the surface sites of alumina has also been found.  相似文献   

3.
In order to improve a “Three Function Catalysts Model”, the present paper deals with alumina based catalysts containing cobalt and palladium for the NO reduction by methane.

The deNOx temperature window was estimated by adsorption and subsequent desorption of NO in lean conditions. Two NOx desorption peaks were detected for both catalysts. For Pd(0.63)Co(0.58)/Al2O3, the two desorption peaks appeared at 205 and 423 °C, whereas for Pd(0.14)Co(0.57)/Al2O3, the maxima desorption temperature peaks were at 205 and 487 °C. In addition, NO oxidation was also studied to evaluate the catalyst first function. It was found that, the oxidation begins on Co–Pd/Al2O3 around 250 °C. On Pd(0.63)Co(0.58)/Al2O3, 8% of deNOx were found in the range of the second NOx desorption peak temperature (410 °C). During TPSR, CxHyOz species such as formaldehyde were detected. These oxygenate species are the reactive intermediate for deNOx by methane.  相似文献   


4.
Performance of NOx traps after high-temperature treatments in different redox environments was studied. Two types of treatments were considered: aging and pretreatment. Lean and rich agings were examined for a model NOx trap, Pt–Ba/Al2O3. These were done at 950 °C for 3 h, in air and in 1% H2/N2, respectively. Lean aging had a severe impact on NOx trap performance, including HC and CO oxidation, and NH3 and N2O formation. Rich aging had minimal impact on performance, compared to fresh/degreened performance. Deactivation from lean aging was essentially irreversible due to Pt sintering, but Pt remained dispersed with the rich aging. Pretreatments were examined for a commercially feasible fully formulated NOx trap and two model NOx traps, Pt–Ba/Al2O3 and Pt–Ba–Ce/Al2O3. Pretreatments were done at 600 °C for 10 min, and used feed gas that simulated diesel exhaust under several conditions. Lean pretreatment severely suppressed NOx, HC, CO, NH3 and N2O activities for the ceria-containing NOx traps, but had no impact on Pt–Ba/Al2O3. Subsequently, a relatively mild rich pretreatment reversed this deactivation, which appears to be due to a form of Pt–ceria interaction, an effect that is well known from early work on three-way catalysts. Practical applications of results of this work are discussed with respect to NOx traps for light-duty diesel vehicles.  相似文献   

5.
The NOx storage and reduction functions of a Pt–Ba/Al2O3 “NOx storage–reduction” catalyst has been investigated in the present work by applying the transient response and the temperature programmed reaction methods, by using propylene as the reducing agent. It is found that: (i) the storage of NOx occurs first at BaO and then at BaCO3, which are the most abundant sites following regeneration of catalyst with propylene; (ii) the overall storage process at BaCO3 is slower than at BaO; (iii) CO2 inhibits the NOx storage at low temperatures; (iv) the amount of NOx stored up to catalyst saturation at 350 °C corresponds to 17.6% of Ba; (v) the reduction of stored NOx groups is fast and is limited by the concentration of propylene in the investigated T range (250–400 °C); (vi) selectivity to N2 is almost complete at 400 °C but is significantly lower at 300 °C due to the formation of NO which can be tentatively ascribed to the presence of unselective Pt–O species.  相似文献   

6.
We present a systematic study of the NH3-SCR reactivity over a commercial V2O5–WO3/TiO2 catalyst in a wide range of temperatures and NO/NO2 feed ratios, which cover (and exceed) those of interest for industrial applications to the aftertreatment of exhaust gases from diesel vehicles. The experiments confirm that the best deNOx efficiency is achieved with a 1/1 NO/NO2 feed ratio. The main reactions prevailing at the different operating conditions have been identified, and an overall reaction scheme is herein proposed.

Particular attention has been paid to the role of ammonium nitrate, which forms rapidly at low temperatures and with excess NO2, determining a lower N2 selectivity of the deNOx process. Data are presented which show that the chemistry of the NO/NO2–NH3 reacting system can be fully interpreted according to a mechanism which involves: (i) dimerization/disproportion of NO2 and reaction with NH3 and water to give ammonium nitrite and ammonium nitrate; (ii) reduction of ammonium nitrate by NO to ammonium nitrite; (iii) decomposition of ammonium nitrite to nitrogen. Such a scheme explains the peculiar deNOx reactivity at low temperature in the presence of NO2, the optimal stoichiometry (NO/NO2 = 1/1), and the observed selectivities to all the major N-containing products (N2, NH4NO3, HNO3, N2O). It also provides the basis for the development of a mechanistic kinetic model of the NO/NO2–NH3 SCR reacting system.  相似文献   


7.
The effectiveness of Ag/Al2O3 catalyst depends greatly on the alumina source used for preparation. A series of alumina-supported catalysts derived from AlOOH, Al2O3, and Al(OH)3 was studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible (UV–vis) spectroscopy, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, O2, NO + O2-temperature programmed desorption (TPD), H2-temperature programmed reduction (TPR), thermal gravimetric analysis (TGA) and activity test, with a focus on the correlation between their redox properties and catalytic behavior towards C3H6-selective catalytic reduction (SCR) of NO reaction. The best SCR activity along with a moderated C3H6 conversion was achieved over Ag/Al2O3 (I) employing AlOOH source. The high density of Ag–O–Al species in Ag/Al2O3 (I) is deemed to be crucial for NO selective reduction into N2. By contrast, a high C3H6 conversion simultaneously with a moderate N2 yield was observed over Ag/Al2O3 (II) prepared from a γ-Al2O3 source. The larger particles of AgmO (m > 2) crystallites were believed to facilitate the propene oxidation therefore leading to a scarcity of reductant for SCR of NO. An amorphous Ag/Al2O3 (III) was obtained via employing a Al(OH)3 source and 500 °C calcination exhibiting a poor SCR performance similar to that for Ag-free Al2O3 (I). A subsequent calcination of Ag/Al2O3 (III) at 800 °C led to the generation of Ag/Al2O3 (IV) catalyst yielding a significant enhancement in both N2 yield and C3H6 conversion, which was attributed to the appearance of γ-phase structure and an increase in surface area. Further thermo treatment at 950 °C for the preparation of Ag/Al2O3 (V) accelerated the sintering of Ag clusters resulting in a severe unselective combustion, which competes with SCR of NO reaction. In view of the transient studies, the redox properties of the prepared catalysts were investigated showing an oxidation capability of Ag/Al2O3 (II and V) > Ag/Al2O3 (IV) > Ag/Al2O3 (I) > Ag/Al2O3 (III) and Al2O3 (I). The formation of nitrate species is an important step for the deNOx process, which can be promoted by increasing O2 feed concentration as evidenced by NO + O2-TPD study for Ag/Al2O3 (I), achieving a better catalytic performance.  相似文献   

8.
Catalytic performance of Sn/Al2O3 catalysts prepared by impregnation (IM) and sol–gel (SG) method for selective catalytic reduction of NOx by propene under lean burn condition were investigated. The physical properties of catalyst were characterized by BET, XRD, XPS and TPD. The results showed that NO2 had higher reactivity than NO to nitrogen, the maximum NO conversion was 82% on the 5% Sn/Al2O3 (SG) catalyst, and the maximum NO2 conversion reached nearly 100% around 425 °C. Such a temperature of maximum NO conversion was in accordance with those of NOx desorption accompanied with O2 around 450 °C. The activity of NO reduction was enhanced remarkably by the presence of H2O and SO2 at low temperature, and the temperature window was also broadened in the presence of H2O and SO2, however the NOx desorption and NO conversion decreased sharply on the 300 ppm SO2 treated catalyst, the catalytic activity was inhibited by the presence of SO2 due to formation of sulfate species (SO42−) on the catalysts. The presence of oxygen played an essential role in NO reduction, and the activity of the 5% Sn/Al2O3 (SG) was not decreased in the presence of large oxygen.  相似文献   

9.
The selective catalytic reduction (SCR) of NOx assisted by propene is investigated on Pd/Ce0.68Zr0.32O2 catalysts (Pd/CZ), and is compared, under identical experimental conditions, with that found on a Pd/SiO2 reference catalyst. Physico-chemical characterisation of the studied catalysts along with their catalytic properties indicate that Pd is not fully reduced to metallic Pd for the Pd/CZ catalysts. This study shows that the incorporation of Pd to CZ greatly promotes the reduction of NO in the presence of C3H6. These catalysts display very stable deNOx activity even in the presence of 1.7% water, the addition of which induces a reversible deactivation of about 10%. The much higher N2 selectivity obtained on Pd/CZ suggests that the lean deNOx mechanism occurring on these catalysts is different from that occurring on Pd0/SiO2. A detailed mechanism is proposed for which CZ achieves both NO oxidation to NO2 and NO decomposition to N2, whereas PdOx activates C3H6 via ad-NO2 species, intermediately producing R-NOx compounds that further decompose to NO and CxHyOz. The role of the latter oxygenates is to reduce CZ to provide the catalytic sites responsible for NO decomposition. The proposed C3H6-assisted NO decomposition mechanism stresses the key role of NO2, R-NOx and CxHyOz as intermediates of the SCR of NOx by hydrocarbons.  相似文献   

10.
Catalytic performance for partial oxidation of methane (POM) to synthesis gas was studied over the Rh/Al2O3 catalysts with Rh loadings between 0.1 and 3 wt%. It was found that the ignition temperature of POM reaction increased with the decreasing of the Rh loadings in the catalysts. For the POM reaction over the catalysts with high (≥1 wt%) Rh loadings, steady-state reactivity was observed. For the reaction over the catalysts with low (≤0.25 wt%) Rh loadings, however, oscillations in CH4 and reaction products (CO, H2, and CO2) were observed. Comparative studies using H2-TPR, O2-TPD and high temperature in situ Raman spectroscopy techniques were carried out in order to elucidate the relation between the redox property of the Rh species in the Rh/Al2O3 with different Rh loadings and the performance of the catalysts for the reaction. Three kinds of oxidized rhodium species, i.e. the rhodium oxide species insignificantly affected by the support (RhOx), that intimately interacting with the Al2O3 surface (RhiOx) and the Rh(AlO2)y species formed by diffusion of rhodium oxides in to sublayers of Al2O3 [C.P. Hwang, C.T. Yeh, Q.M. Zhu, Catal. Today, 51 (1999) 93.], were identified by H2-TPR and O2-TPD experiments. Among them, the first two species can be easily reduced by H2 at temperature below 350 °C, while the last one can only be reduced by H2 at temperature above 500 °C. The ignition temperatures of POM reaction over the catalysts are closely related to the temperature at which most of the RhOx and RhiOx species can be reduced by CH4 in the reaction mixture. Compared to the Rh/Al2O3 with high Rh loadings, the catalysts with low Rh loadings contain more RhiOx species which possess stronger RhO bond strength and are more difficult to be reduced than RhOx by the reaction mixture. Higher temperature is therefore required to ignite the POM reaction over the catalysts with lower Rh loadings. The oscillation during the POM reaction over the Rh/Al2O3 with low Rh loadings can be related to the behaviour of Rh(AlO2)y species in the catalyst switching cyclically from the oxidized state to the reduced state during the reaction.  相似文献   

11.
The objective of this work was to study the promotional effect of Pt on Co-zeolite (viz. mordenite, ferrierite, ZSM-5 and Y-zeolite) and Co/Al2O3 on the selective catalytic reduction (SCR) of NOx with CH4 under dry and wet reaction stream. After being reduced in H2 at 350°C, the PtCo bimetallic zeolites showed higher NO to N2 conversion and selectivity than the monometallic samples, as well as a combination of the latter samples such as mechanical mixtures or two-stage catalysts. After the same pretreatment, under wet reaction stream, the bimetallic samples were also more active. Among the other catalysts studied with 5% of water in the feed, (NO = CH4 = 1000 ppm, O2 = 2%), the NO conversion dropped to zero over Co2.0Mor at 500°C and GHSV = 30,000 h−1, whereas it is 20% in Pt0.5Co2.0Mor. In Pt/Co/Al2O3 the NOx conversion dropped below 5% with only 2% of water under the same reaction conditions. The specific activity given as molecules of NO converted per total metal atom per second were 16.5 × 10−4 s−1 for Pt0.5Co2.0Fer, 13 × 10−4 s−1 for Pt0.5Co2.0Mor, 4.33 × 10−4 s−1 for Pt0.5Co2.0ZSM-5 and 0.5 × 10−4 s−1 for Pt/Co/Al2O3. The Y-zeolite-based samples were inactive in both mono and bimetallic samples. The species initially present in the solid were Pt° and Co°, together with Co2+ and Pt2+ at exchange positions. Co° seems not to participate as an active site in the SCR of NOx. Those species remained after the reaction but some reorganization occurred. A synergetic effect among the different species that enhances both the NO to NO2 reaction, the activation of CH4 and also the ability of the catalyst to adsorb NO, could be responsible for the high activity and selectivity of the bimetallic zeolites.  相似文献   

12.
Mesostructured MnOx–Cs2O–Al2O3 nanocomposites have been synthesized by reverse microemulsion method combined with hydrothermal treatment and then applied to the catalytic combustion of methane. Compared to impregnation-derived conventional MnOx/Cs2O/Com-Al2O3 catalyst, the microemulsion-derived catalyst showed higher activity and stability for methane combustion. The T10% of the fresh and of the 72 h aged MnxO–Cs2O–Al2O3 were 475 and 490 °C, respectively, recommending it as a potential candidate catalyst for application in hybrid gas turbines. The homogeneous composition of the microemulsion-derived nanocomposite catalyst can hinder the loss of Cs+ and accelerate the formation of Cs–β-alumina phase, ensuring thus higher activity and stability for methane combustion.  相似文献   

13.
We have examined the adsorption of CO and NO on powder Pd/Al2O3, Pd–Ce/Al2O3 and CeO2/Al2O3 catalysts, using temperature-programmed desorption (TPD). For CO adsorption on oxidized and pre-reduced Pd–Ce/Al2O3 TPD profiles are identical to those observed for Pd/Al2O3, suggesting that interactions between ceria and Pd have a negligible effect on the adsorption properties of CO. It does, however, affect the oxidation state of the palladium particles. For NO, there are differences between Pd/Al2O3 and Pd–Ce/Al2O3. On oxidized catalysts, Pd/Al2O3 is more efficient for NO dissociation. However, pre-reduction increases the amount of NO that can adsorb on Pd–Ce/Al2O3 and react to N2O and N2. In comparison with Pd/Al2O3, reduced Pd–Ce/Al2O3catalysts dissociate NO at relatively high temperatures but they are more reactive and favor N2 over N2O.  相似文献   

14.
We have examined different processing conditions for the synthesis of HCN by the ammoxidation of methane over woven Pt–Rh gauzes in an autothermal bench scale reactor. Compared to the conventional air processes, the HCN yield can be improved 10–15% by preheating the reactant gases, and HCN throughput can be increased 140% by removing N2 from the feed stream. We were able to attain operation in a high pressure bench scale reactor, and HCN yields were maintained above 0.60 up to 3.5 atm at 300% of the throughput achievable at 1 atm.

We also investigated activation of the Pt–Rh gauze catalyst which occurs through facet and pit formation on the metal surface. A high temperature treatment reduced activation times from 30 to 3 h. Pits on the catalyst surface resulted from increased temperatures and NH3 in the reactant gas, but HCN processing conditions were necessary for the catalyst to achieve best performance.  相似文献   


15.
The storage and release of NO2 on alumina-supported barium oxide has been studied with particular attention to the stoichiometry of the two processes. At 400 °C the storage process is characterised by a short period of complete uptake, possibly as nitrito or nitro species, followed by a slower partial uptake in which approximately one NO is released for every three NO2 lost. The latter reaction appears to supply the oxygen necessary to store NO2 as nitrate ions. Molecular O2 has little direct involvement even if in large excess. The second storage reaction also occurs, but to a much lesser extent, with Al2O3 alone. During temperature programmed desorption, release of NOx from Al2O3 peaks at 430 °C with evolution of NO2 and some O2. Release from BaO/Al2O3 exhibits an additional peak near 520 °C corresponding to formation of NO and a higher O2 concentration. The NO may arise from NO2 since BaO/Al2O3 has activity for NO2 decomposition by 500 °C. Although CO2 at low concentration is rapidly taken up by BaO/Al2O3 at 400 °C it is displaced by NO2 and does not interfere with storage. Thermodynamic calculations show that the formation of Ba(NO3)2 by the reaction of NO2 with bulk BaCO3 under the conditions used here is more favourable above 380 °C if NO is evolved than if O2 is consumed.  相似文献   

16.
The selective reduction of NOx over H-mordenite (H-m) was studied using CH3OH as reducing agent. Results are compared with those obtained with other conventional reducing agents (ethylene and methane), with gas-phase reactions, and with other metal-exchanged mordenites (Cu-mordenite (Cu-m) and Co-mordenite (Co-m)). H-m was found to be an effective catalyst for the SCR of NOx with CH3OH. When different reducing agents were compared over H-m, CH3OH > C2H4 > CH4 was the order according to the maximum NO conversion obtained using 1% of oxygen in the feed. Instead, if selectivity is considered, the order results CH4 > CH3OH > C2H4. In reaction experiments, two distinct zones defined by two maxima with NO to N2 conversion are obtained at two different temperatures. A correlation exists between the said zones and the CO : CO2 ratio. At low temperatures, CO prevails whereas at high temperatures CO2 prevails. These results indicate that there exist different reaction intermediates. Evidence from reaction experiments, FTIR results, and transient experiments suggest that the reaction mechanism involves formaldehyde and dimethyl ether (DME) as intermediates in the 200–500°C temperature range. The surface interaction between CH3OH (or its decomposition products) and NO is negligible if compared with NO2, indicating that the oxidation of NO to NO2 on acid sites is a fundamental path in this system. Different from other non-oxygenated reductants (methane and ethylene), a gas-phase NOx initiation effect on hydrocarbon combustion was not observed.  相似文献   

17.
A series of sulfated zirconia supported Pd/Co catalysts was synthesized by the sol–gel method and examined for NOx reduction by methane. The NO conversion increased up to a Co/S ratio of 0.43, and then decreased at a higher Co loading (Co/S = 0.95). Sulfate content was also essential for obtaining high selectivity to molecular nitrogen. A catalyst loaded with 0.06 wt.% Pd, 2.1 wt.% Co and 2.1 wt.% S (Pd/Co-SZ-2) exhibited remarkable performance under lean conditions and displayed stability in a long-term durability test using a synthetic reaction mixture containing 10% water vapor. This catalyst exhibited the highest sulfur retention most probably as cobalt sulfide. Besides, the catalytic oxidation of NO to NOy groups was confirmed by FT-IR, in agreement with the general mechanism for the SCR of NO by hydrocarbons. In the absence of oxygen in the feed stream, the catalyst was highly active for NO reduction with methane. IR stretching bands assigned to N2O and adsorbed nitro groups were identified upon adsorbing NO on Pd/Co-SZ-2. This indicates that under rich conditions disproportionation of NO to N2O and NO2 occurs and confirms that the formation of NO2 species is an essential step for NO reduction by CH4.  相似文献   

18.
The effect of the Pd addition method into the fresh Pd/(OSC + Al2O3) and (Pd + OSC)/Al2O3 catalysts (OSC material = CexZr1−xO2 mixed oxides) was investigated in this study. The CO + NO and CO + NO + O2 model reactions were studied over fresh and aged catalysts. The differences in the fresh catalysts were insignificant compared to the aged catalysts. During the CO + NO reaction, only small differences were observed in the behaviour of the fresh catalysts. The light-off temperature of CO was about 20 °C lower for the fresh Pd/(OSC + Al2O3) catalyst than for the fresh (Pd + OSC)/Al2O3 catalyst during the CO + NO + O2 reaction. For the aged catalysts lower NO reduction and CO oxidation activities were observed, as expected. Pd on OSC-containing alumina was more active than Pd on OSC material after the agings. The activity decline is due to a decrease in the number of active sites on the surface, which was observed as a larger Pd particle size for aged catalysts than for fresh catalysts. In addition, the oxygen storage capacity of the aged Pd/(OSC + Al2O3) catalyst was higher than that of the (Pd + OSC)/Al2O3 catalyst.  相似文献   

19.
The selective catalytic reduction of NOx by methane on noble metal-loaded sulfated zirconia (SZ) catalysts was studied. Ru, Rh, Pd, Ag, Ir, Pt, and Au-loaded sulfated zirconia catalysts were compared with the intact sulfated zirconia. For the NO–CH4–O2 reaction, Ru, Rh, Pd, Ir, and Pt showed promotion effect on NOx reduction, while for the NO2–CH4–O2 reaction, only Rh and Pd showed promotion effect. Over intact and Rh, Pd, Ag, and Au-loaded sulfated zirconia, NOx conversion in NO2–CH4–O2 reaction was significantly higher than that in NO–CH4–O2 reaction, while clear difference was not observed over Ru, Ir, and Pt-loaded sulfated zirconia. Comparison of [NO2]/([NO]+[NO2]) in the effluent gases in NO–O2 and NO2–O2 reactions showed that Ru, Ir, and Pt has high activity for NO oxidation under the reaction conditions. These facts suggest that effects of these metals toward NOx reduction by methane can be categorized into the following three groups: (i) low activity for NO oxidation to NO2, and high activity for NO2 reduction to N2 (Pd, Rh); (ii) high activity for NO oxidation to NO2, and low activity for NO2 reduction to N2 (Ru, Ir, Pt); (iii) low activity for both reactions (Ag, Au). To confirm these suggestions, combination of these metals were investigated on binary or physically-mixed catalysts. The combination of Pd or Rh with Pt or Ru gave high activity for the selective reduction of NOx by methane.  相似文献   

20.
The effect of different reducing agents (H2, CO, C3H6 and C3H8) on the reduction of stored NOx over PM/BaO/Al2O3 catalysts (PM = Pt, Pd or Rh) at 350, 250 and 150 °C was studied by the use of both NO2-TPD and transient reactor experiments. With the aim of comparing the different reducing agents and precious metals, constant molar reduction capacity was used during the reduction period for samples with the same molar amount of precious metal. The results reveal that H2 and CO have a relatively high NOx reduction efficiency compared to C3H6 and especially C3H8 that does not show any NOx reduction ability except at 350 °C over Pd/BaO/Al2O3. The type of precious metals affects the NOx storage-reduction properties, where the Pd/BaO/Al2O3 catalyst shows both a high storage and a high reduction ability. The Rh/BaO/Al2O3 catalyst shows a high reduction ability but a relatively low NOx storage capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号