首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
在中试装置上对催化剂LNEH-1进行了醚化原料催化裂化轻汽油选择性加氢脱除二烯烃的应用研究,考察了该催化剂的加氢性能、异构化能力及稳定性。结果表明,在进料空速为2h-1,反应器入口温度为50℃,氢油体积比为15,反应压力为1.5MPa的操作条件下,产物中单烯和二烯烃含量明显下降,单烯减小量在4个百分点以下,二烯烃质量分数低于0.02%,3-甲基-1-丁烯异构化率大于70%,叔碳烯烃含量增加。经过1500h稳定性试验,产物中的二烯烃质量分数小于0.010%,单烯加氢率小于4个百分点。  相似文献   

2.
催化裂化轻汽油中3-甲基-1-丁烯加氢异构化反应   总被引:1,自引:0,他引:1  
以催化裂化全馏分汽油中分离出低于70℃的轻汽油为原料,采用镍基LNEH-1催化剂,研究了加氢和异构化反应规律。结果表明,在反应温度为60℃,氢气/原料油(体积比)为30,反应压力为1.5 MPa,进料空速为2 h-1的条件下,轻汽油中二烯烃质量分数从0.34%降低到0,加氢转化率达到100%;3-甲基-1-丁烯异构转化率为86.25%;叔碳烯烃质量分数由19.43%增到21.00%。  相似文献   

3.
氮对催化裂化汽油中烯烃加氢饱和反应的影响   总被引:1,自引:0,他引:1  
 采用硅胶吸附脱除原料中氮化物,得到氮含量不同而硫含量及烃类组成基本相同的4种催化裂化汽油原料。为了考察氮化物对催化裂化汽油选择性加氢脱硫过程烯烃加氢饱和反应(HYDO)的影响,在反应温度285 ℃、氢分压1.6 MPa、体积空速4.0 h-1及氢油体积比400的条件下,采用Co-Mo/Al2O3催化剂在中型固定床试验装置上进行了4种催化裂化汽油原料选择性加氢脱硫试验。结果表明,在催化裂化汽油选择性加氢脱硫过程中,氮化物对HYDO有明显的抑制作用;对直链烯烃和环烯烃加氢饱和反应抑制作用明显,但对支链烯烃加氢饱和反应抑制作用较小。硫含量和烃类组成相同的原料,烯烃饱和率相同时,氮含量较高的原料加氢产物研究法辛烷值比氮含量较低的原料加氢产物研究法辛烷值损失小。  相似文献   

4.
H2S对催化裂化汽油选择性加氢脱硫的影响   总被引:5,自引:1,他引:5  
在中型试验装置上考察了循环氢中H2S含量对催化裂化汽油加氢脱硫反应及烯烃加氢饱和反应的影响。结果表明,在催化裂化汽油选择性加氢脱硫过程中,循环氢中H2S对加氢脱硫反应具有抑制作用、对烯烃加氢饱和反应具有促进作用,随着循环氢中H2S含量的增加,催化剂的选择性下降。  相似文献   

5.
杨萍华 《石油化工》2004,33(Z1):1454-1455
用负载量不同的Zn和过渡金属改性ZRP沸石作为催化剂,在固定床微反装置上考察了催化裂化汽油的芳构化反应性能.结果表明,Zn和过渡金属在催化剂上的最佳负载量(质量分数)为2.5%左右.随着水热老化时间的延长,该老化催化剂的芳烃选择性变化不大.在反应温度540℃、质量空速3.2 h-1条件下,原料的烯烃含量越高,产物中芳烃产率越高,烯烃下降幅度越大.  相似文献   

6.
催化裂化操作参数对降低汽油烯烃含量的影响   总被引:20,自引:6,他引:14  
针对催化裂化汽油烯烃含量较高的情况,在中型提升管催化裂化装置上,考察了原料油性质、催化剂性质、反应条件、汽油馏程等对汽油烯烃含量的影响,提出了工业生产装置降低催化裂化汽油烯烃含量的措施。研究发现,催化裂化汽油烯烃含量与氢转移指数(异丁烷/丁烯及异丁烷/异丁烯)呈线性关系,氢含量高、K值大的原料油,汽油烯烃含量较高。使用降烯烃催化剂、提高催化剂活性、提高剂油比、降低反应温度、延长反应时间、提高烃分压、提高汽油终馏点等有利于降低催化裂化汽油烯烃含量。  相似文献   

7.
催化裂化汽油选择性加氢脱硫催化剂RSDS-1的开发   总被引:24,自引:4,他引:20  
介绍了用于催化裂化汽油选择性加氢脱硫催化剂RSDS-1的研究开发,考察了载体、活性组元、金属原子比以及助剂对催化剂选择性的影响。研究结果表明,催化裂化汽油中烯烃的加氢饱和受扩散限制;Co—Mo组合对烯烃饱和的能力相对较弱;较高的Co/Mo原子比有利于提高催化剂选择性;助剂的加入对催化剂选择性有明显的影响;RSDS—1催化剂用于催化裂化汽油选择性脱硫,对不同原料油适应性好,脱硫率可达80%,RON损失小于2个单位,且可长周期稳定运转。  相似文献   

8.
FCC轻汽油非贵金属二烯烃选择加氢催化剂   总被引:1,自引:0,他引:1  
采用非贵金属镍基二烯烃选择加氢催化剂,以催化裂化汽油不大于C6馏分(干点不大于75℃)为原料,在50~60℃,1.5 MPa,液体空速为2.0~4.0 h-1,氢气/原料体积比为12~24的条件下,进行选择性加氢反应。结果表明,反应中二烯烃转化率为100%;叔戊烯质量分数增加率始终大于2%;反应至800 h后,C5单烯质量分数减少量小于1%。  相似文献   

9.
催化裂化汽油选择性加氢脱硫工艺流程选择   总被引:3,自引:2,他引:3  
研究了催化裂化汽油加氢脱硫各种可能的加工流程。结果表明,将汽油切割成轻重馏分分别进行处理,可以大幅度减少汽油烯烃在加氢脱硫过程中的饱和;轻馏分汽油中硫醇可以通过碱抽提方式脱除,不影响汽油烯烃含量;由于汽油中的二烯烃在较缓和条件下能促进胶质的生成,需要进行选择性脱二烯烃;由于循环氢中的硫化氢对加氢脱硫反应有抑制作用、对烯烃饱和反应有促进作用,应增加循环氢脱硫化氢系统;产品中的硫醇可经固定床氧化脱除。根据催化裂化汽油原料特性、反应动力学及工业应用需要确定选择性加氢脱硫的工艺流程。  相似文献   

10.
考察了多种改性材料的氢转移反应活性及对催化裂化催化剂的重油转化活性及汽油中烯烃含量的影响规律。采用高活性稳定性的改性分子筛材料,在较优的工艺条件下制备了可以降低催化裂化汽油烯烃含量的GOR催化剂。小型固定流化床评价结果表明,另一般重油裂化催化剂相比,在裂化能力和选择性相当时,GOR催化剂可降低汽油烯烃含量5.2个百分点,且汽油辛烷值略有提高。  相似文献   

11.
活性炭负载杂多酸催化轻汽油醚化试验   总被引:2,自引:0,他引:2  
在实验室中,以活性炭负载杂多酸为催化剂,对催化裂化轻汽油进行醚化试验。通过选择催化剂活性组分和适宜的轻汽油醚化工艺条件,即反应温度70℃,液体空速1.0h^-1,醇烯摩尔比为1.25,催化裂化轻汽油经醚化并与未经醚化的重催化裂化汽油按自然比调合后,汽油烯烃含量可降低5.5~8.6个百分点,RON可增加0.2~0.4个单位,汽油质量得到明显改善。  相似文献   

12.
苏文生 《石化技术》2009,16(1):57-60
概述了国内催化裂化汽油降烯烃催化剂和助剂的开发应用情况,重点介绍了降烯烃催化裂化新工艺及加氢脱硫技术进展。指出通过优化工艺操作条件及采用新工艺,可以明显降低催化裂化汽油的烯烃含量。  相似文献   

13.
原料中杂质对催化裂化轻汽油醚化反应的影响   总被引:2,自引:0,他引:2  
介绍了原料中杂质对催化裂化轻汽油醚化反应和选择性加氢反应的影响及其脱除方法。为了保护催化剂,实现醚化装置的长周期运行,对醚化催化裂化轻汽油进料的金属阳离子、二烯烃以及氮化物等杂质含量以及甲醇进料的水含量都要进行严格控制,对选择性加氢反应的催化裂化轻汽油进料的砷含量以及氢气进料的H_2S含量也要进行严格控制,并且控制在规定的指标范围内。  相似文献   

14.
催化裂化汽油叠合反应降烯烃研究   总被引:1,自引:0,他引:1  
在实验室小型连续流动式固定床反应器上,以催化裂化汽油为原料,考察了所研制催化剂的降烯烃性能,探讨了工艺条件对叠合降烯烃的影响,结果表明,M-A/γ-Al2O3催化剂具有很高的活性、稳定性和选择性.在反应温度为140℃、反应压力2.0 MPa、进料空速1.0 h-1的条件下,进行了催化裂化汽油叠合降烯烃反应试验,所得产物与原料油相比,烯烃质量分数由52.98%降至33.97%,下降了19个百分点,达到国家汽油质量标准的要求,且汽油辛烷值下降不到2个单位;叠合汽油收率为73.5%同时获得收率为25.2%叠合柴油,其十六烷值为50.  相似文献   

15.
开发了一种催化裂化汽油预加氢催化剂并进行了工业应用试验。实验室评价结果表明, GHC-32预加氢催化剂不但有很好的加氢活性、选择性,同时还具有很好的加工原料适应性。工业应用试验结果表明,在反应温度、反应压力皆低于设计值的情况下,催化裂化汽油的硫醇硫质量分数从21.6.8 μg/g降到2.7 μg/g,双烯值从0.64 gI/(100 g)降到0.20 gI/(100 g),单烯烃体积分数仅仅降低了0.3百分点,加氢产品的RON没有损失。GHC-32预加氢催化剂在工业试验首次标定中表现出良好的加氢活性和选择性。  相似文献   

16.
催化裂化轻汽油醚化技术的工业应用   总被引:1,自引:0,他引:1  
介绍了催化裂化轻汽油醚化技术在中国石油天然气股份有限公司兰州石化分公司500 kt/a汽油醚化装置的工业应用情况。该装置以加氢脱硫后的催化轻汽油为原料(醚化催化剂为D005-IIS树脂),生产低烯烃、高辛烷值的醚化汽油产品。为检验装置的运行情况,对装置进行了满负荷标定,结果表明:在第一、二醚化反应器入口温度40.5℃和51.8℃及体积空速1.14 h-1左右的条件下,将甲醇与汽油中叔碳烯烃按照摩尔比1.4∶1.0进行醚化反应,生产出的醚化汽油辛烷值RON平均值达到99.5,比原料辛烷值提高了4.6个单位;轻汽油原料中C5,C6叔碳烯烃的转化率分别为71.01%和54.80%,均高于设计值(70%和46%),说明醚化汽油中烯烃含量也有所下降,满足高标号汽油的调合要求;标定期间装置能耗为1 271.364 MJ/t,低于设计值;醚化汽油和剩余C5收率较高,达到99.96%。  相似文献   

17.
加氢渣油催化裂化汽油诱导期短的原因分析及对策   总被引:3,自引:0,他引:3  
通过对催化裂化汽油组成、诱导期等性质指标的跟踪,分析了影响加氢渣油催化裂化汽油诱导期的主要因素。结果表明,二烯值大、酚含量低是加氢渣油催化裂化汽油诱导期短的主要原因。加氢渣油具有重组分裂解性能差、重金属含量高等特性,其催化裂化反应温度高、平衡催化剂沉积重金属(镍+钒)含量高,导致热裂化反应增多、氢转移反应减少,致使汽油中共轭二烯烃含量高。原料中氧含量低可导致汽油中酚含量低。通过采取优化催化裂化原料、优化操作条件、优化汽油调合及添加抗氧剂等措施可保证汽油诱导期合格。  相似文献   

18.
裂解汽油在镍基催化剂上的加氢行为研究   总被引:2,自引:1,他引:1  
采用微分反应器对裂解汽油在镍基催化剂06-Ni-25上的加氢动力学进行了研究,考察了反应温度、反应压力、液体空速等条件对裂解汽油加氢效果的影响.结果表明,反应温度和液体空速是影响裂解汽油加氢转化率和选择性的2个重要参数,反应压力的影响则比较小.以双烯和单烯2个集总为模型,分别建立了裂解汽油在镍基催化剂06-Ni-25上的双烯和单烯动力学方程.由所建方程可得,双烯、单烯加氢反应活化能分别为83.000,97.384 kJ/mol.  相似文献   

19.
南军  李梅  刘晨光 《石油化工》2005,34(Z1):479-481
研究了Pd/Al2O3催化剂在连续重整汽油选择性加氢脱烯烃反应中的加氢性能,结果表明,对于Pd/Al2O3催化剂采用现有工业常用的工艺条件,不能用于满足产品需要,其原因是高沸点馏分强吸附在催化剂表面,从而导致催化剂失活.但在连续重整汽油BTX馏分选择性加氢脱烯烃的反应过程中,在适宜的工艺条件下,可以使加氢汽油的溴价小于200 mg/100g、芳烃损失小于0.5%,满足芳烃抽提进料的指标要求.  相似文献   

20.
以NiO/HZSM-5为增强芳构化助剂,通过催化裂化与芳构化反应耦合,使催化裂化汽油和裂化气中的部分烯烃转化为芳烃,以降低汽油馏分中的烯烃含量,改善催化裂化汽油的组成。考察了助剂添加量对催化裂化催化剂降烯烃性能的影响,并与以CoAPO-11分子筛和HZSM-5与APO-11复合分子筛为助剂的催化裂化催化剂进行了对比。结果表明,NiO/HZSM-5的芳构化降烯烃效果最好,当添加量为5%时,汽油馏分中烯烃含量降低了5.8个百分点,而芳烃含量提高了9.7个百分点。并对催化裂化与芳构化反应耦合的机理进行了初步探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号