ABSTRACT A novel theoretical approach to electroosmotic dewatering (EOD), with or without a pressure gradient, of clays, sludges and other colloidal suspensions is proposed. The treatment is based on nan-equilibrium thermodynamics as developed in the work of Overbeek, De Groot and others. The interpretation of electrokinetic phenomena in terms of the cancepts of irreversible thermodynamics when combined with Onsager's relations, it has been shown by Overbeek, provides a complete framework for understanding all electrokinetic phenomena. We have applied this approach here to the electroosmotic dewatering. both in the presence and absence of applied hydrostatic pressure. The approach provides much clarification on the nature and significance of currents and fluxes observed during EOD: these are composed of three components, during combined pressure electroosmotic dewatering: (i) electrochemicavelectrical current; (ii) hydrodynamic flux: (iii) electroosmotic current. We have also shown the manner in which the proposed new approach to EOD based on irreversible thermodynamics can be connected to the conventional approach based on the Helmholzu-Smoluchowski equation. 相似文献
One-dimensional nanotubes are of considerable interest in materials and biochemical sciences. A particular desire is to create DNA nanotubes with user-defined structural features and biological relevance, which will facilitate the application of these nanotubes in the controlled release of drugs, templating of other materials into linear arrays and the construction of artificial membrane channels. However, little is known about the structures of assembled DNA nanotubes in solution. Here we report an in situ exploration of segmented DNA nanotubes, composed of multiple units with set length distributions, by using synchrotron small-angle X-ray scattering (SAXS). Through joint experimental and theoretical studies, we show that the SAXS data are highly informative in the context of heterogeneous mixtures of DNA nanotubes. The structural parameters obtained by SAXS are in good agreement with those determined by atomic force microscopy (AFM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). In particular, the SAXS data revealed important structural information on these DNA nanotubes, such as the in-solution diameters (≈25 nm), which could be obtained only with difficulty by use of other methods. Our results establish SAXS as a reliable structural analysis method for long DNA nanotubes and could assist in the rational design of these structures. 相似文献
Summary: Soluble multi‐walled carbon nanotubes (s‐MWNTs), obtained via amidation reaction of octadecylamine with purified multi‐walled carbon nanotubes (p‐MWNTs), were solution‐mixed with P(MMA‐co‐EMA) at various loadings. Compared to the p‐MWNTs/P(MMA‐co‐EMA) composites, the s‐MWNTs/P(MMA‐co‐EMA) composites showed great improvement both in Young's modulus and tensile strength. With the addition of 10 wt.‐% s‐MWNTs, the Young's modulus and tensile strength of s‐MWNTs/P(MMA‐co‐EMA) composite have 135% and 49% increase over the pure P(MMA‐co‐EMA), respectively, and a 9.2% increase in Young's modulus and 12.8% increase in tensile strength over that of 10 wt.‐% p‐MWNTs composite. With the increase of MWNTs content, the Tg increases from 89 to 106 °C. SEM studies show that the s‐MWNTs are well dispersed in the polymer matrix. Good dispersion of s‐MWNTs in polymer matrix and great interfacial bonding between s‐MWNTs and P(MMA‐co‐EMA) may be the key reason for the improvement of the mechanical properties.
Stress‐strain curves of the MWNTs and P(MMA‐co‐EMA) composites. 相似文献
Geomimetic chrysotile nanotubes have a high potentiality in nanotechnological applications. These synthetic inorganic nanotubes can be used to prepare quantum wires with interesting electrical and optical properties. In fact, they behave as host systems, exhibiting a constant inner diameter inferior to 7 nm, a low tendency to aggregate and large inter-channel separation, preventing the interaction between individual guest filled nanomaterial acting as an unisosotropic confining structure. The chemical-physical properties of undoped and differently Fe doped geoinspired chrysotile synthetic nanotubes have been reviewed confirming that these characteristic features make synthetic chrysotile nanotubes excellent candidates to prepare innovative inorganic nanowires. Furthermore, the possibility to synthesize undoped geomimetic chrysotile nanotubes with high reproducibility and crystallinity avoids cytotoxicity , making them safe for human health. 相似文献
Electrokinetics of the solute transport across the porous walls of micro channel is important from its practical application but less explored. Transport of the charged macro-solutes across perm-selective walls in a microchannel is investigated. The extended Nernst–Planck equation describes the charged macro-solutes distribution in the mass transfer boundary layer over the porous wall. The transverse electromigration of the charged macro-solute either augments or suppresses the concentration polarization and the permeation rate depending on the wall and solute surface potential (attractive or repelling). The wall potential is screened due to the electrical double layer interaction of the wall and charged solute. It is observed that the charged solute concentration over the channel wall enhances by two times in case of oppositely charged interactions (unlike solute and channel wall) compared to like charges. The findings of this study can facilitate understanding of electrokinetic based drug delivery and separation systems involving charged solutes. 相似文献
Carbon nanotubes (CNTs) have been widely studied for their potential applications in many fields from nanotechnology to biomedicine. The preparation of magnetic CNTs (Mag-CNTs) opens new avenues in nanobiotechnology and biomedical applications as a consequence of their multiple properties embedded within the same moiety. Several preparation techniques have been developed during the last few years to obtain magnetic CNTs: grafting or filling nanotubes with magnetic ferrofluids or attachment of magnetic nanoparticles to CNTs or their polymeric coating. These strategies allow the generation of novel versatile systems that can be employed in many biotechnological or biomedical fields. Here, we review and discuss the most recent papers dealing with the preparation of magnetic CNTs and their application in biomedical and biotechnological fields. 相似文献
Hybrid nanomaterials fabricated by the heterogeneous integration of 1D (carbon nanotubes) and 2D (graphene oxide) nanomaterials showed synergy in electrical and mechanical properties. Here, we reported the infiltration of carboxylic functionalized single-walled carbon nanotubes (C-SWNT) into free-standing graphene oxide (GO) paper for better electrical and mechanical properties than native GO. The stacking arrangement of GO sheets and its alteration in the presence of C-SWNT were comprehensively explored through scanning electron microscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction. The C-SWNTs bridges between different GO sheets produce a pathway for the flow of electrical charges and provide a tougher hybrid system. The nanoscopic surface potential map reveals a higher work function of the individual functionalised SWNTs than surrounded GO sheets showing efficient charge exchange. We observed the enhanced conductivity up to 50 times and capacitance up to 3.5 times of the hybrid structure than the GO-paper. The laminate of polystyrene composites provided higher elastic modulus and mechanical strength when hybrid paper is used, thus paving the way for the exploitation of hybrid filler formulation in designing polymer composites. 相似文献
Recent advances in nanofabrication, measurement, and analysis techniques of nanofluidic systems have allowed ion transport to be systematically explored in narrow, confined channels with dimensions of less than about 10 nm. In such small dimensions, anomalous ion transport can be observed. This review describes several unique ion-transport phenomena recently reported in sub-10 nm fluidic channels and provides an introduction to recently developed nanofabrication techniques to create sub-10 nm nanochannels by both top-down and bottom-up approaches. 相似文献
An electrokinetic model for a wavy capillary has been developed. Poisson‐Nernst‐Planck and Navier‐Stokes equations constitute the model that governs fluid and ionic fluxes and electric potential distribution inside the capillary. In the present paper, a finite wavy cylindrical capillary with a large reservoir at both capillary ends is analyzed using finite element method. The model is used primarily to examine the influence of capillary surface waviness on the electrokinetic transport behaviours. Different frequencies and amplitudes of the wavy surface are considered to investigate the influence of surface waviness on electrokinetic transport. Fluctuations in potential and ionic concentration distribution increase with the increase in either amplitude or frequency of the capillary surface waviness. However, for higher frequencies the fluctuation diminishes for all surface waviness amplitudes. It is observed that for any irregularity in the capillary surface results in higher salt rejection. Salt rejection is found to be dependent on capillary axial length as well as flow velocity. A critical Peclet number, beyond which salt rejection attains a constant steady value, dictates maximum salt rejection. 相似文献