首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
βarrestin (βarr)-1 and -2 (βarrs) (or Arrestin-2 and -3, respectively) are universal G protein-coupled receptor (GPCR) adapter proteins expressed abundantly in extra-retinal tissues, including the myocardium. Both were discovered in the lab of the 2012 Nobel Prize in Chemistry co-laureate Robert Lefkowitz, initially as terminators of signaling from the β-adrenergic receptor (βAR), a process known as functional desensitization. They are now known to switch GPCR signaling from G protein-dependent to G protein-independent, which, in the case of βARs and angiotensin II type 1 receptor (AT1R), might be beneficial, e.g., anti-apoptotic, for the heart. However, the specific role(s) of each βarr isoform in cardiac GPCR signaling and function (or dysfunction in disease), remain unknown. The current consensus is that, whereas both βarr isoforms can desensitize and internalize cardiac GPCRs, they play quite different (even opposing in certain instances) roles in the G protein-independent signaling pathways they initiate in the cardiovascular system, including in the myocardium. The present review will discuss the current knowledge in the field of βarrs and their roles in GPCR signaling and function in the heart, focusing on the three most important, for cardiac physiology, GPCR types (β1AR, β2AR & AT1R), and will also highlight important questions that currently remain unanswered.  相似文献   

2.
G-protein-coupled receptors (GPCRs) are known to play central roles in the physiology of many organisms. Members of this seven α-helical transmembrane protein family transduce the extracellular signals and regulate intracellular second messengers through coupling to heterotrimeric G-proteins, adenylate cyclase, cAMPs, and protein kinases. As a result of the critical function of GPCRs in cell physiology and biochemistry, they not only play important roles in cell biology and the medicines used to treat a wide range of human diseases but also in insects’ physiological functions. Recent studies have revealed the expression and function of GPCRs in insecticide resistance, improving our understanding of the molecular complexes governing the development of insecticide resistance. This article focuses on the review of G-protein coupled receptor (GPCR) signaling pathways in insect physiology, including insects’ reproduction, growth and development, stress responses, feeding, behaviors, and other physiological processes. Hormones and polypeptides that are involved in insect GPCR regulatory pathways are reviewed. The review also gives a brief introduction of GPCR pathways in organisms in general. At the end of the review, it provides the recent studies on the function of GPCRs in the development of insecticide resistance, focusing in particular on our current knowledge of the expression and function of GPCRs and their downstream regulation pathways and their roles in insecticide resistance and the regulation of resistance P450 gene expression. The latest insights into the exciting technological advances and new techniques for gene expression and functional characterization of the GPCRs in insects are provided.  相似文献   

3.
Throughout evolution, the need for single-celled organisms to associate and form a single cluster of cells has had several evolutionary advantages. In complex, multicellular organisms, each tissue or organ has a specialty and function that make life together possible, and the organism as a whole needs to act in balance and adapt to changes in the environment. Sensory organs are essential for connecting external stimuli into a biological response, through the senses: sight, smell, taste, hearing, and touch. The G-protein-coupled receptors (GPCRs) are responsible for many of these senses and therefore play a key role in the perception of the cells’ external environment, enabling interaction and coordinated development between each cell of a multicellular organism. The malaria-causing protozoan parasite, Plasmodium falciparum, has a complex life cycle that is extremely dependent on a finely regulated cellular signaling machinery. In this review, we summarize strong evidence and the main candidates of GPCRs in protozoan parasites. Interestingly, one of these GPCRs is a sensor for K+ shift in Plasmodium falciparum, PfSR25. Studying this family of proteins in P. falciparum could have a significant impact, both on understanding the history of the evolution of GPCRs and on finding new targets for antimalarials.  相似文献   

4.
To commemorate the awarding of the Nobel Prize for Chemistry to Daniel Shechtman for his discovery of quasicrystals, this paper reviews our recent studies of the interaction of rare gases and hydrocarbon gases with the tenfold surface of quasicrystalline decagonal Al-Co-Ni.  相似文献   

5.
Opioid receptors are G-protein-coupled receptors (GPCRs) part of cell signaling paths of direct interest to treat pain. Pain may associate with inflamed tissue characterized by acidic pH. The potentially low pH at tissue targeted by opioid drugs in pain management could impact drug binding to the opioid receptor, because opioid drugs typically have a protonated amino group that contributes to receptor binding, and the functioning of GPCRs may involve protonation change. In this review, we discuss the relationship between structure, function, and dynamics of opioid receptors from the perspective of the usefulness of computational studies to evaluate protonation-coupled opioid-receptor interactions.  相似文献   

6.
G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies.  相似文献   

7.
G protein-coupled receptors (GPCRs) represent one of the most functionally diverse classes of transmembrane proteins. GPCRs and their associated signaling systems have been linked to nearly every physiological process. They also constitute nearly 40% of the current pharmacopeia as direct targets of remedial therapies. Hence, their place as a functional nexus in the interface between physiological and pathophysiological processes suggests that GPCRs may play a central role in the generation of nearly all types of human disease. Perhaps one mechanism through which GPCRs can mediate this pivotal function is through the control of the molecular aging process. It is now appreciated that, indeed, many human disorders/diseases are induced by GPCR signaling processes linked to pathological aging. Here we discuss one such novel member of the GPCR family, GPR19, that may represent an important new target for novel remedial strategies for the aging process. The molecular signaling pathways (metabolic control, circadian rhythm regulation and stress responsiveness) associated with this recently characterized receptor suggest an important role in aging-related disease etiology.  相似文献   

8.
阐述2000年诺贝尔化学奖的创造发明过程,主要包括聚乙炔、聚苯胺为代表的导电聚合物发现、发展发明机理和应用。  相似文献   

9.
Numerous studies have focused on the molecular signaling pathways that govern the development and growth of lymphatics in the hopes of elucidating promising druggable targets. G protein-coupled receptors (GPCRs) are currently the largest family of membrane receptors targeted by FDA-approved drugs, but there remain many unexplored receptors, including orphan GPCRs with no known biological ligand or physiological function. Thus, we sought to illuminate the cadre of GPCRs expressed at high levels in lymphatic endothelial cells and identified four orphan receptors: GPRC5B, AGDRF5/GPR116, FZD8 and GPR61. Compared to blood endothelial cells, GPRC5B is the most abundant GPCR expressed in cultured human lymphatic endothelial cells (LECs), and in situ RNAscope shows high mRNA levels in lymphatics of mice. Using genetic engineering approaches in both zebrafish and mice, we characterized the function of GPRC5B in lymphatic development. Morphant gprc5b zebrafish exhibited failure of thoracic duct formation, and Gprc5b−/− mice suffered from embryonic hydrops fetalis and hemorrhage associated with subcutaneous edema and blood-filled lymphatic vessels. Compared to Gprc5+/+ littermate controls, Gprc5b−/− embryos exhibited attenuated developmental lymphangiogenesis. During the postnatal period, ~30% of Gprc5b−/− mice were growth-restricted or died prior to weaning, with associated attenuation of postnatal cardiac lymphatic growth. In cultured human primary LECs, expression of GPRC5B is required to maintain cell proliferation and viability. Collectively, we identify a novel role for the lymphatic-enriched orphan GPRC5B receptor in lymphangiogenesis of fish, mice and human cells. Elucidating the roles of orphan GPCRs in lymphatics provides new avenues for discovery of druggable targets to treat lymphatic-related conditions such as lymphedema and cancer.  相似文献   

10.
Recent studies have shed light on the diverse and complex roles of G-protein coupled receptors (GPCRs) in the pathophysiology of stroke. These receptors constitute a large family of seven transmembrane-spanning proteins that play an intricate role in cellular communication mechanisms which drive both tissue injury and repair following ischemic stroke. Orphan GPCRs represent a unique sub-class of GPCRs for which no natural ligands have been found. Interestingly, the majority of these receptors are expressed within the central nervous system where they represent a largely untapped resource for the treatment of neurological diseases. The focus of this review will thus be on the emerging roles of two brain-expressed orphan GPCRs, GPR37 and GPR37 L1, in regulating various cellular and molecular processes underlying ischemic stroke.  相似文献   

11.
G protein-coupled receptors (GPCRs) form a large protein family that plays an important role in many physiological and pathophysiological processes. However, the central role that the biogenic amine binding GPCRs and their ligands play in cell signaling poses a risk in new drug candidates that reveal side affinities towards these receptor sites. These candidates have the potential to interfere with the physiological signaling processes and to cause undesired effects in preclinical or clinical studies. Here, we present 3D cross-chemotype pharmacophore models for three biogenic amine antitargets: the alpha(1A) adrenergic, the 5-HT(2A) serotonin, and the D2 dopamine receptors. These pharmacophores describe the key chemical features present within these biogenic amine antagonists and rationalize the biogenic amine side affinities found for numerous new drug candidates. First applications of the alpha(1A) adrenergic receptor model reveal that these in silico tools can be used to guide the chemical optimization towards development candidates with fewer alpha(1A)-mediated side effects (for example, orthostatic hypotension) and, thus, with an improved clinical safety profile.  相似文献   

12.
G protein-coupled receptors (GPCRs) are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK) occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS) are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC) isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors. Herein, we discuss the main mechanisms of GPCR-mediated cell-surface receptors transactivation and the pathways involved in intracellular responses induced by GPCR agonists. These studies may suggest the design of novel strategies for therapeutic interventions.  相似文献   

13.
Hormones and many other neurotransmitters, growth factors, odorant molecules, and light all present stimuli for a class of membrane-anchored receptors called G protein-coupled receptors (GPCRs). The GPCRs are the largest family of cell-surface receptors involved in signal transduction. About 1% of all known genes of Drosophila and more than 5% of the genes of Caenorhabditis elegans encode GPCRs. In addition, more than 50% of current therapeutic agents on the market target these receptors. When the enormous biological and pharmaceutical importance of these receptors is considered, it is surprising how little is known about the mechanism with which these receptors recognize their natural ligands. In this review we present a structural approach, utilizing techniques of high-resolution NMR spectroscopy, to address the question of whether peptides from the neuropeptide Y family of neurohormones are recognized directly from solution or from the membrane-bound state. In our studies we discovered that the structures of the membrane-bound species are better correlated to the pharmacological properties of these peptides than the solution structures are. These findings are supported by the observation that many biophysical properties of these peptides seem to be optimized for membrane binding. We finally present a scenario of possible events during receptor recognition.  相似文献   

14.
Signaling bias is a promising characteristic of G protein-coupled receptors (GPCRs) as it provides the opportunity to develop more efficacious and safer drugs. This is because biased ligands can avoid the activation of pathways linked to side effects whilst still producing the desired therapeutic effect. In this respect, a deeper understanding of receptor dynamics and implicated allosteric communication networks in signaling bias can accelerate the research on novel biased drug candidates. In this review, we aim to provide an overview of computational methods and techniques for studying allosteric communication and signaling bias in GPCRs. This includes (i) the detection of allosteric communication networks and (ii) the application of network theory for extracting relevant information pipelines and highly communicated sites in GPCRs. We focus on the most recent research and highlight structural insights obtained based on the framework of allosteric communication networks and network theory for GPCR signaling bias.  相似文献   

15.
Nature relies on a wide range of enzymes with specific biocatalytic roles to carry out much of the chemistry needed to sustain life. Enzymes catalyze the interconversion of a vast array of molecules with high specificity—from molecular nitrogen fixation to the synthesis of highly specialized hormones and quorum-sensing molecules. Ever increasing emphasis on renewable sources for energy and waste minimization has turned enzymes into key industrial workhorses for targeted chemical conversions. Modern enzymology is central to not only food and beverage manufacturing processes but also finds relevance in countless consumer product formulations such as proteolytic enzymes in detergents, amylases for excess bleach removal from textiles, proteases in meat tenderization, and lactoperoxidases in dairy products. Herein, we present an overview of enzyme science and engineering milestones and the emergence of directed evolution of enzymes for which the 2018 Nobel Prize in Chemistry was awarded to Dr. Frances Arnold.  相似文献   

16.
文章通过对日本近年来获得诺贝尔化学奖科学家的教育背景与教育工作环境的分析,讨论了二战后日本的初等教育、中等教育、高等教育等对科学创新的影响。日本的初等教育给予了孩子兴趣和自由,中等教育鼓励学生个体发展与创新,而高等教育及其工作环境给予了研究者独立的研究空间和财政支持。日本教育的振兴对日本科技发展的推动作用可以为我国的教育事业提供借鉴。  相似文献   

17.
The key participants in G-protein-coupled receptor (GPCR) signaling are the mitogen-activated protein kinase (MAPK) signaling cascades. The mechanisms involved in the activation of the above cascades by GPCRs are not fully elucidated. The prototypical GPCR is the receptor for gonadotropin-releasing hormone (GnRHR), which serves as a key regulator of the reproductive system. Here, we expressed GnRHR in COS7 cells and found that GnRHR transmits its signals to MAPKs mainly via Gαi and the EGF receptor, without the involvement of Hb-EGF or PKCs. The main pathway that leads to JNK activation downstream of the EGF receptor involves a sequential activation of c-Src and PI3K. ERK activation by GnRHR is mediated by the EGF receptor, which activates Ras either directly or via c-Src. Beside the main pathway, the dissociated Gβγ and β-arrestin may initiate additional (albeit minor) pathways that lead to MAPK activation in the transfected COS7 cells. The pathways detected are significantly different from those in other GnRHR-bearing cells, indicating that GnRH can utilize various signaling mechanisms for MAPK activation. The unique pathway elucidated here, in which c-Src and PI3K are sequentially activated downstream of the EGF receptor, may serve as a prototype of signaling mechanisms by GnRHR and additional GPCRs in various cell types.  相似文献   

18.
The importance of palladium‐catalyzed cross coupling reactions in contemporary organic synthesis is undisputed and underlined by the Nobel Prize for Chemistry in 2010. In addition to the highly efficient cross coupling reactions for single C C bond construction, palladium‐catalyzed cascade processes involving multiple bond formations have emerged in recent years as valuable tools for the rapid synthesis of complex molecular scaffolds. This review presents an overview of the most relevant developments in this field, with a focus on the generation of diverse poly‐ and heterocyclic scaffolds. The generally well understood reactivity of palladium has allowed the discovery of many intriguing novel cascade processes, and the creativity of the synthetic community will undoubtedly lead to many more discoveries in the future.  相似文献   

19.
G protein-coupled receptors (GPCRs) are key players in mediating signal transduction across the cell membrane. However, due to their intrinsic instability, many GPCRs are not suitable for structural investigations. Various approaches have been developed in recent years to remedy this situation, ranging from the use of more native membrane mimetics to protein-stabilization methods. The latter approach typically results in GPCRs that contain various numbers of mutations. However, probing the functionality of such variants by in vitro and in vivo assays is often time consuming. In addition, to validate the suitability of such GPCRs for structural investigations, an assessment of their conformation state is required. NMR spectroscopy has been proven to be suitable to probe the conformation state of GPCRs in solution. Here, by using chemical labeling with an isotope-labeled methyl probe, we show that the activity and the conformation state of stabilized neurotensin receptor 1 variants obtained from directed evolution can be efficiently assayed in 2D NMR experiments. This strategy enables the quantification of the active and inactive conformation states and the derivation of an estimation of the basal as well as agonist-induced activity of the receptor. Furthermore, this assay can be used as a readout when re-introducing agonist-dependent signaling into a highly stabilized, and thus rigidified, receptor by mutagenesis. This approach will be useful in cases where low production yields do not permit the addition of labeled compounds to the growth medium and where 1D NMR spectra of selectively 19F-labeled receptors are not sufficient to resolve signal overlap for a more detailed analysis.  相似文献   

20.
Despite the fact that G protein-coupled receptors (GPCRs) are the largest signal-conveying receptor family and mediate many physiological processes, their role in tumor biology is underappreciated. Numerous lines of evidence now associate GPCRs and their downstream signaling targets in cancer growth and development. Indeed, GPCRs control many features of tumorigenesis, including immune cell-mediated functions, proliferation, invasion and survival at the secondary site. Technological advances have further substantiated GPCR modifications in human tumors. Among these are point mutations, gene overexpression, GPCR silencing by promoter methylation and the number of gene copies. At this point, it is imperative to elucidate specific signaling pathways of “cancer driver” GPCRs. Emerging data on GPCR biology point to functional selectivity and “biased agonism”; hence, there is a diminishing enthusiasm for the concept of “one drug per GPCR target” and increasing interest in the identification of several drug options. Therefore, determining the appropriate context-dependent conformation of a functional GPCR as well as the contribution of GPCR alterations to cancer development remain significant challenges for the discovery of dominant cancer genes and the development of targeted therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号