首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Isobaric tags for relative and absolute quantitation (iTRAQ), Tandem Mass Tags (TMT) and related chemical tag reagents provide analytical platforms for quantitative proteomics applied to clinical samples. In this Viewpoint article, applications for discovery and targeted modes are discussed with an emphasis on study design and technical considerations in biomarker analysis. The evolution and promise of emerging, related strategies are also discussed. It should be noted that iTRAQ and TMT users contributed to the key debates in the biomarker field, to define strategies for biomarker discovery for identification of clinical biomarkers, and continue to inform design of verification and validation assays via implementation of non-isobaric variants for targeted analyses.  相似文献   

2.
The evaluation of biomarker candidates, involving quantitative measurement of a large number of proteins in bodily fluids, remains the main obstruction in the development of a biomarker validation pipeline. Although immunoassays are commonly used, high-throughput and multiplex-capable methods are required for expediting the evaluation process. MS-based approaches employing targeted proteomic strategies provide not only a sensitive, but in addition a precise quantification tool, which is versatile, systematic, and scalable. Its capability of multiplexing hundreds of targets facilitate a cost-effective and rapid evaluation and is especially useful during the early stage of the process where a large list of candidate biomarkers must be triaged before entering validation studies. The robustness requirement for the methods also mandates a high degree of selectivity to analyze complex clinical samples. Improvement in the selectivity of LC-MS methods has been achieved by adopting high-resolution and high-accuracy mass analyzers to perform quantitative analyses with a novel method called parallel reaction monitoring. This article discusses the design and performance of biomarker evaluation studies using targeted proteomics strategies and the implementation of recent technology developments.  相似文献   

3.
Early detection and targeted therapy represent a novel regimen of cancer management. The understanding of receptor tyrosine kinases in tumorigenesis at the molecular level has led to the first generation of kinase inhibitors for anticancer therapy that targets a specific kinase or pathway. While the therapeutic advantage is obvious, targeted therapy often relapses and results in drug resistance for advanced cancers. To achieve feasible early detection and better efficacy of therapeutics targeting multiple pathways, significantly more biomarkers and drug targets are in demand, especially for individualized therapy. Recent advances in phosphoprotein enrichment and MS technologies for quantitative phosphoproteome analysis provide great opportunities in the identification and validation of kinases as drug targets. The MS-based phosphoproteomic technologies would be useful tools as well for the identification of phosphosignatures unique to a specific type or subtype of cancer and drug responsive biomarkers. This review summarizes the major kinases acting as cancer biomarkers and drug targets, the advances of MS-based phosphoproteomic technologies, and some potential values and challenges of this emerging phosphoproteomics-based biomarker and drug target discovery field. Strategies for global, targeted, and quantitative phosphoproteomics are discussed, and some recent interesting applications are also evaluated.  相似文献   

4.
Owing to recent advances in proteomics analytical methods and bioinformatics capabilities there is a growing trend toward using these capabilities for the development of drugs to treat human disease, including target and drug evaluation, understanding mechanisms of drug action, and biomarker discovery. Currently, the genetic sequences of many major organisms are available, which have helped greatly in characterizing proteomes in model animal systems and humans. Through proteomics, global profiles of different disease states can be characterized (e.g. changes in types and relative levels as well as changes in PTMs such as glycosylation or phosphorylation). Although intracellular proteomics can provide a broad overview of physiology of cells and tissues, it has been difficult to quantify the low abundance proteins which can be important for understanding the diseased states and treatment progression. For this reason, there is increasing interest in coupling comparative proteomics methods with subcellular fractionation and enrichment techniques for membranes, nucleus, phosphoproteome, glycoproteome as well as low abundance serum proteins. In this review, we will provide examples of where the utilization of different proteomics-coupled enrichment techniques has aided target and biomarker discovery, understanding the drug targeting mechanism, and mAb discovery. Taken together, these improvements will help to provide a better understanding of the pathophysiology of various diseases including cancer, autoimmunity, inflammation, cardiovascular disease, and neurological conditions, and in the design and development of better medicines for treating these afflictions.  相似文献   

5.
In medicine, there is an urgent need for protein biomarkers in a range of applications that includes diagnostics, disease stratification, and therapeutic decisions. One of the main technologies to address this need is MS, used for protein biomarker discovery and, increasingly, also for protein biomarker validation. Currently, data-dependent analysis (also referred to as shotgun proteomics) and targeted MS, exemplified by SRM, are the most frequently used mass spectrometric methods. Recently developed data-independent acquisition techniques combine the strength of shotgun and targeted proteomics, while avoiding some of the limitations of the respective methods. They provide high-throughput, accurate quantification, and reproducible measurements within a single experimental setup. Here, we describe and review data-independent acquisition strategies and their recent use in clinically oriented studies. In addition, we also provide a detailed guide for the implementation of SWATH-MS (where SWATH is sequential window acquisition of all theoretical mass spectra)—one of the data-independent strategies that have gained wide application of late.  相似文献   

6.
To date, multiple biomarker discovery studies in urine have been conducted. Nevertheless, the rate of progression of these biomarkers to qualification and even more clinical application is extremely low. The scope of this article is to provide an overview of main clinically relevant proteomic findings from urine focusing on kidney diseases, bladder and prostate cancers. In addition, approaches for promoting the use of urine in clinical proteomics including potential means to facilitate the validation of existing promising findings (biomarker candidates identified from previous studies) and to increase the chances for success for the identification of new biomarkers are discussed.  相似文献   

7.
Platelets in the circulation are triggered by vascular damage to activate, aggregate and form a thrombus that prevents excessive blood loss. Platelet activation is stringently regulated by intracellular signalling cascades, which when activated inappropriately lead to myocardial infarction and stroke. Strategies to address platelet dysfunction have included proteomics approaches which have lead to the discovery of a number of novel regulatory proteins of potential therapeutic value. Global analysis of platelet proteomes may enhance the outcome of these studies by arranging this information in a contextual manner that recapitulates established signalling complexes and predicts novel regulatory processes. Platelet signalling networks have already begun to be exploited with interrogation of protein datasets using in silico methodologies that locate functionally feasible protein clusters for subsequent biochemical validation. Characterization of these biological systems through analysis of spatial and temporal organization of component proteins is developing alongside advances in the proteomics field. This focused review highlights advances in platelet proteomics data mining approaches that complement the emerging systems biology field. We have also highlighted nucleated cell types as key examples that can inform platelet research. Therapeutic translation of these modern approaches to understanding platelet regulatory mechanisms will enable the development of novel anti-thrombotic strategies.  相似文献   

8.
Early accurate diagnosis and personalized treatment are essential in order to treat complex or fatal diseases such as cancer and autoimmune, cardiovascular and neurodegenerative diseases. To realize this vision, new diagnostic and prognostic biomarkers are urgently required. MS-based proteomics is the most promising approach for protein biomarker identification, but suffers in clinical translation of biomarker candidates that show only quantitative differences from normal tissue. Indeed, success in translating proteomic data to biomarkers in the clinic has been disappointing. Here, we propose that protein termini provide a new opportunity for biomarker discovery due to qualitative differences in intact and new protein termini between diseased and normal tissues. Altered proteolysis occurs in most pathologies. Disease- and process-specific protein modifications, including proteolytic processing and subsequent modification of the terminal amino acids, frequently lead to altered protein activity that plays key roles in the disease process. Thus, mapping of ensembles of characteristic protein termini provides a proteolytic signature of high information content that shows both quantitative and most importantly qualitative differences in different diseases and stage of disease. These unique protein biomarkers have the added benefit of being mechanistically informative by revealing the activity state of the bioactive protein. Moreover, proteome-wide isolation of protein termini leads to generalized sample simplification, thereby enabling up to three orders of magnitude lower LODs compared to traditional shotgun proteomic approaches. We introduce the potential of protein termini for biomarker discovery, briefly review methods enabling large-scale studies of protein termini, and discuss how these may be integrated into a termini-oriented biomarker discovery pipeline from discovery to clinical application.  相似文献   

9.
Multiple sclerosis is an inflammatory-mediated demyelinating disorder most prevalent in young Caucasian adults. The various clinical manifestations of the disease present several challenges in the clinic in terms of diagnosis, monitoring disease progression and response to treatment. Advances in MS-based proteomic technologies have revolutionized the field of biomarker research and paved the way for the identification and validation of disease-specific markers. This review focuses on the novel candidates discovered by the application of quantitative proteomics to relevant disease-affected tissues in both the human context and within the animal model of the disease known as experimental autoimmune encephalomyelitis. The role of targeted MS approaches for biomarker validation studies, such as multiple reaction monitoring will also be discussed.  相似文献   

10.
The underlying pathophysiology of psychiatric disorders remains elusive. The use of quantitative proteomics to investigate disease-specific protein signatures holds great promise to improve the understanding of psychiatric disorders and identify relevant biomarkers. In this review, we discuss quantitative proteomic approaches for elucidating molecular mechanisms of psychiatric disorders, i.e. anxiety, schizophrenia, bipolar disorder and depression, by studying specimens from animal models and patients. We present gel-based, label-free and stable isotope-labeling methodologies and evaluate their strengths and limitations in the context of psychiatric research, with a focus on (15)N metabolic labeling of live animals due to its increased accuracy and potential for future applications. We also review biomarker candidate validation methods and present quantitative proteomic studies from the literature that aim to disentangle the molecular pathobiology of psychiatric disorders and identify candidate biomarkers. Finally, we explore the applicability of implementing proteomic methods as a routine diagnostic tool in the clinical laboratory.  相似文献   

11.
Investigation of the human specimens is an essential element for understanding the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. The studies hold promise for identifying biomarkers for diagnosis and prognosis, elucidating disease mechanisms, and accelerating the development of new strategies for therapeutic intervention. Here, we review proteomics studies of human brain samples in light of recent advances of mass spectrometry, focusing on the general strategies for experimental design and analysis (e.g., sample pooling and replication, selection of proteomics platforms, and false discovery rate in data processing), because quantitative analysis of clinical samples is confounded by a number of variables, including genetic differences, antemortem and postmortem factors, and experimental errors. Diverse proteomics platforms are also discussed with respect to sensitivity, throughput, and accuracy. Regarding the enormous complexity of the human brain and the limitation of current proteomics technologies, it may be more practical to analyze a subset of proteome in a functional context, in order to facilitate the identification of important disease-related proteins in the substantial noise reflecting biological and technical variances.  相似文献   

12.
The rapid advances in proteomic technologies have made possible systematic analysis of hundreds to thousands of proteins in clinical samples with the promise of uncovering novel protein biomarkers for various disease conditions. We will discuss in this review article current MS and protein chip-based quantitative proteomic approaches and their application in biomarker discovery. The emphasis will be placed on new quantification strategies employing stable isotopic labeling coupled with MS/MS, and antibody-based protein chips and nanodevices. The strength and weakness of each technology are briefly highlighted.  相似文献   

13.
Over the last decade, translational science has come into the focus of academic medicine, and significant intellectual and financial efforts have been made to initiate a multitude of bench-to-bedside projects. The quest for suitable biomarkers that will significantly change clinical practice has become one of the biggest challenges in translational medicine. Quantitative measurement of proteins is a critical step in biomarker discovery. Assessing a large number of potential protein biomarkers in a statistically significant number of samples and controls still constitutes a major technical hurdle. Multiplexed analysis offers significant advantages regarding time, reagent cost, sample requirements and the amount of data that can be generated. The two contemporary approaches in multiplexed and quantitative biomarker validation, antibody-based immunoassays and MS-based multiple (or selected) reaction monitoring, are based on different assay principles and instrument requirements. Both approaches have their own advantages and disadvantages and therefore have complementary roles in the multi-staged biomarker verification and validation process. In this review, we discuss quantitative immunoassay and multiple reaction monitoring/selected reaction monitoring assay principles and development. We also discuss choosing an appropriate platform, judging the performance of assays, obtaining reliable, quantitative results for translational research and clinical applications in the biomarker field.  相似文献   

14.
Identification of the molecular mechanisms of host-pathogen interaction is becoming a key focus of proteomics. Analysis of these interactions holds promise for significant developments in the identification of new therapeutic strategies to combat infectious diseases, a process that will also benefit parallel improvements in molecular diagnostics, biomarker identification and drug discovery. This review highlights recent advances in functional proteomics initiatives in infectious disease with emphasis on studies undertaken within physiologically relevant parameters that enable identification of the infectious proteome rather than that of the vegetative state. Deciphering the molecular details of what constitutes physiologically relevant host-pathogen interactions remains an underdeveloped aspect of research into infectious disease. The magnitude of this deficit will be largely influenced by the ease with which model systems can be established to investigate such interactions. As the selective pressures exerted by the host on an infecting pathogen are numerous, the adequacy of certain model systems should be considered carefully.  相似文献   

15.
Diverse proteomic techniques based on protein MS have been introduced to systematically characterize protein perturbations associated with disease. Progress in clinical proteomics is essential for personalized medicine, wherein treatments will be tailored to individual needs based on patient stratification using noninvasive disease monitoring procedures to reveal the most appropriate therapeutic targets. However, breakthroughs await the successful development and application of a robust proteomic pipeline capable of identifying and rigorously assessing the relevance of multiple candidate proteins as informative diagnostic and prognostic indicators or suitable drug targets involved in a pathological process. While steady progress has been made toward more comprehensive proteome profiling, the emphasis must now shift from in depth screening of reference samples to stringent quantitative validation of selected lead candidates in a broader clinical context. Here, we present an overview of the emerging proteomic strategies for high-throughput protein detection focused primarily on targeted MS/MS as the basis for biomarker verification in large clinical cohorts. We discuss the conceptual promise and practical pitfalls of these methods in terms of achieving higher dynamic range, higher throughput, and more reliable quantification, highlighting research avenues that merit additional inquiry.  相似文献   

16.
The upregulation of protease expression and proteolytic activity is implicated in numerous pathological conditions such as neurodegeneration, cancer, cardiovascular and autoimmune diseases, and bone degeneration. During disease progression, various proteases form characteristic patterns of cleaved proteins and peptides, which can affect disease severity and course of progression. It has been shown that qualitative and quantitative monitoring of cleaved protease substrates can provide relevant prognostic, diagnostic, and therapeutic information. As proteolytic fragments and peptides generated in the affected tissue are commonly translocated to blood, urine, and other proximal fluids, their possible application as biomarkers is the subject of ongoing research. The field of degradomics has been established to enable the global identification of proteolytic events on the organism level, utilizing proteomic approaches and sample preparation techniques that facilitate the detection of proteolytic processing of protease substrates in complex biological samples. In this review, some of the latest developments in degradomic methodologies used for the identification and validation of biologically relevant proteolytic events and their application in the search for clinically relevant biomarker candidates are presented. The current state of degradomics in clinics is discussed and the future perspectives of the field are outlined.  相似文献   

17.
This review documents the uses of quantitative MS applied to colorectal cancer (CRC) proteomics for biomarker discovery and molecular pathway profiling. Investigators are adopting various labeling and label-free MS approaches to quantitate differential protein levels in cells, tumors, and plasma/serum. We comprehensively review recent uses of this technology to examine mouse models of CRC, CRC cell lines, their secretomes and subcellular fractions, CRC tumors, CRC patient plasma/serum, and stool samples. For biomarker discovery these approaches are uncovering proteins with potential diagnostic and prognostic utility, while in vitro cell culture experiments are characterizing proteomic and phosphoproteomic responses to disrupted signaling pathways due to mutations or to inhibition of drugable enzymes.  相似文献   

18.
Multiple sclerosis affects more than 2.5 million people worldwide. Although multiple sclerosis was described almost 150 years ago, there are many knowledge gaps regarding its etiology, diagnosis, prognosis, and pathogenesis. Multiple sclerosis is an inflammatory, demyelinating, neurodegenerative disease of the CNS. During the last several decades, experimental models of multiple sclerosis have contributed to our understanding of the inflammatory disease mechanisms and have aided drug testing and development. However, little is known about the neurodegenerative mechanisms that operate during the evolution of the disease. Currently, all therapeutic approaches are primarily based on the inflammatory aspect of the disease. During the last decade, proteomics has emerged as a promising tool for revealing molecular pathways as well as identifying and quantifying differentially expressed proteins. Therefore, proteomics may be used for the discovery of biomarkers, potential drug targets, and new regulatory mechanisms. To date, a considerable number of proteomics studies have been conducted on samples from experimental models and patients with multiple sclerosis. These data form a solid base for further careful analysis and validation.  相似文献   

19.
Probably no topic has generated more excitement in the world of proteomics than the search for biomarkers. This excitement has been generated by two realities: the constant need for better biomarkers that can be used for disease diagnosis and prognosis, and the recent developments in proteomic technologies that are capable of scanning the individual proteins within varying complex clinical samples. Ideally a biomarker would be assayable from a noninvasively collected sample, therefore, much of the focus in proteomics has been on the analysis of biofluids such as serum, plasma, urine, cerebrospinal fluid, lymph, etc. While the discovery of biomarkers has been elusive, there have been many advances made in the understanding of the proteome content of various biofluids, and in the technologies used for their analysis, that continues to point the research community toward new methods for achieving the ultimate goal of identifying novel disease-specific biomarkers. In this review, we will describe and discuss many of the proteomic approaches taken in an attempt to find novel biomarkers in serum, plasma, and lymph.  相似文献   

20.
The success of clinical proteomics, per definition, is ultimately defined by the clinical implementation of proteomics findings. Extensive research activity in the field, targeting especially biomarker discovery, has been conducted in the past decades, with several studies suggesting a benefit from proteome‐based application in patient management. This viewpoint article discusses the current status in clinical proteomics with respect to implementation (as evidenced by the use of protein findings in drug labeling and patient stratification), and proposes specific action points for accelerating the biomarker validation process, placing special emphasis on the importance of data and resource sharing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号