首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In this contribution, the diffusion of benzene in the porous metal organic framework MOF-5 is investigated by molecular dynamics simulations. Previously, we have shown that by using a first principles derived fully flexible force field the experimentally determined self-diffusion coefficients Dself could be well reproduced [S. Amirjalayer, M. Tafipolsky, R. Schmid, Angew. Chem. Int. Ed. 46 (2007) 463]. Here, we use the same methodology to determine the loading dependence on the diffusion. It is found that diffusivity, which is in the range of liquid benzene, slightly increases up to a load of 32 molecules per unit cell and then falls off at higher load. Free energy maps reveal that additional sites appear at higher load due to attractive guest–guest interactions. The topology of these sites is very close to the experimentally determined locations of ferrocene molecules in MOF-5, which corroborates that attractive ππ interactions govern these systems. The site–site and site-phenylene distances are very similar to the first solvation radius of liquid benzene. For the very open MOF-5, the main barrier for diffusive transport is to overcome the attractive interaction in the binding pockets, which is in contrast to zeolitic microporous systems, where the barrier for diffusion is the hindrance of the pore window. Spatial free energy maps are used to investigate the diffusion pathway on a molecular level and the load dependence of the free energy barriers for these transport processes.  相似文献   

2.
We have developed a three‐dimensional polymer density functional theory (DFT) and applied it to predict the thermodynamic and structural information of molecular transport through a surfactant‐covered interface. The green recursive function method has been employed to consider the chain conformation effect. The reference ideal gas method has been developed, extending it from molecular DFT to polymer DFT, with a universal form to calculate thermodynamic properties such as the grand potential and free energy. We have demonstrated the accuracy of the theory by comparing it to available simulations. Furthermore, we have applied the theory to predict the free energy barrier and density profile of molecular transport through a surfactant‐covered interface. The free energy profile provides reasonable predictions of the transition velocity, while the density profile gives insight into the microstructural information of the transport process, which is consistent with the available molecular simulations. © 2017 American Institute of Chemical Engineers AIChE J, 63: 238–249, 2018  相似文献   

3.
Circulating extracellular vesicles (cEV) are released by many kinds of cells and play an important role in cellular communication, signaling, inflammation modulation, coagulation, and tumor growth. cEV are of growing interest, not only as biomarkers, but also as potential treatment targets. However, very little is known about the effect of transporting biological samples from the clinical ward to the diagnostic laboratory, notably on the protein composition. Pneumatic tube systems (PTS) and human carriers (C) are both routinely used for transport, subjecting the samples to different ranges of mechanical forces. We therefore investigated qualitatively and quantitatively the effect of transport by C and PTS on the human cEV proteome and particle size distribution. We found that samples transported by PTS were subjected to intense, irregular, and multidirectional shocks, while those that were transported by C mostly underwent oscillations at a ground frequency of approximately 4 Hz. PTS resulted in the broadening of nanoparticle size distribution in platelet-free (PFP) but not in platelet-poor plasma (PPP). Cell-type specific cEV-associated protein abundances remained largely unaffected by the transport type. Since residual material of lymphocytes, monocytes, and platelets seemed to dominate cEV proteomes in PPP, it was concluded that PFP should be preferred for any further analyses. Differential expression showed that the impact of the transport method on cEV-associated protein composition was heterogeneous and likely donor-specific. Correlation analysis was nonetheless able to detect that vibration dose, shocks, and imparted energy were associated with different terms depending on the transport, namely in C with cytoskeleton-regulated cell organization activity, and in PTS with a release of extracellular vesicles, mainly from organelle origin, and specifically from mitochondrial structures. Feature selection algorithm identified proteins which, when considered together with the correlated protein-protein interaction network, could be viewed as surrogates of network clusters.  相似文献   

4.
Studies in transport phenomena have been limited to a select few coordinate systems. Specifically, Cartesian, cylindrical, spherical, Dijksman toroidal, and bipolar cylindrical coordinates have been the primary focus of transport work. The lack of diverse coordinate systems, for which the equations of change have been worked out, limits the diversity of transport phenomena problem solutions. Here, we introduce eccentric cylindrical coordinates and develop the corresponding equations of change (continuity, motion, and energy). This new coordinate system is unique, distinct from bipolar cylindrical coordinates, and does not contain cylindrical coordinates as a special case. We find eccentric cylindrical coordinates to be more intuitive for solving transport problems than bipolar cylindrical coordinates. Specific applications are given, in the form of novel exact solutions, for problems important to chemical engineers, in momentum, heat and mass transfer. We complete our analysis of eccentric cylindrical coordinates by using the new equations to solve one momentum, one energy, and one mass transport problem exactly. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3563–3581, 2017  相似文献   

5.
We investigate phase stability, microstructure, and thermoelectric transport of polycrystalline bulk Ca3−xRxMn2O7 samples prepared by standard solid-state reaction, where R = Y or La and 0 ≤ x ≤ 0.33. Ab-initio calculations predict that Y-doping at Ca-sites should reduce the potential energy barrier for electron transport, as opposed to La-doping. We find that Y-doping prompts transformation from Ca3Mn2O7 to Ca2MnO4, whereas La-doping is accompanied by no phase transformation. La-doping significantly hinders grain growth, for example, the average grain size decreases from 4.44 ± 0.24 to 1.20 ± 0.03 μm for x = 0 (undoped) and x = 0.33 upon La-doping, respectively. Electrical conductivity and Seebeck coefficients are measured for the temperature range of 300–1300 K, and analyzed in terms of the small polaron hopping model. We find that Y-doping reduces the activation energy for conduction compared to La-doping, for example, 43 and 63 meV, respectively. This suggests that Y reduces the energy barrier for polaron transport, in accordance with computational predictions. This trend is further supported by calculations of selected electronic, structural, and vibrational properties, highlighting the intriguing correlation between electronic transport governed by small polarons and elastic properties, thereby shedding light on charge transport and thermoelectric properties of such layered perovskites.  相似文献   

6.
The potential energy between two interacting colloidal particles is derived by a knowledge of the energy of interaction of two parallel flat plates. The proposed method maps pairs of infinitesimal surface elements from the two interacting bodies to parallel plate-like elements. The results obtained from this theory are compared with the Derjaquin approximation for large kR and the Levine and Dube approximation for small kR.  相似文献   

7.
Two‐dimensional Particle Image Velocimetry (PIV) measurements have been used to characterize the complex turbulent flow generated by a T/3 45° pitched‐blade down‐flow turbine, operated at Re ≈ 5 · 104, in a fully turbulent stirred vessel. To maintain high spatial resolution when viewing the whole vessel, a multi‐block approach has been developed, which combines data from different fields of view into a composite flow map. Using 500 measurements of instantaneous u and v velocity fields, angle‐resolved mean velocity maps and turbulence properties, such as the RMS velocities and the turbulence kinetic energy, have been estimated near to the blade, as well as in the bulk of the vessel, at a spatial resolution of between 1 and 2 mm. Vorticity maps have also been calculated to help visualize the trailing vortex structures close to the impeller blades and integral length scales have been estimated from the two‐dimensional spatial auto‐correlation function. It is shown than the common assumption that the integral length scale is about half the blade width is an overestimate close to the impeller and an underestimate far from the impeller.  相似文献   

8.
Molecular dynamics simulations have been used to model the flexibility of the seven-sugar oligosaccharide of the lectin from Erythrina corallodendron in three separate simulations: one of the isolated oligosaccharide in vacuo, one of the oligosaccharide in solution and one of the oligosaccharide linked to the protein in solution. Adiabatic conformational energy maps were prepared for each of the disaccharide linkages as a means of interpreting the observed dynamics and conformational averages in terms of intramolecular energy. The inclusion of aqueous solvent molecules appears to be necessary to reproduce the experimental conformational behavior, which also cannot be predicted well from conformational energy maps for the disaccharide linkages alone. The crystallographically determined conformation does not appear to be induced by the crystal dimerization, but is rather stable in solution. The build-up of fluctuations along the successive linkages of the oligosaccharide is significant and would be sufficient to prevent branch residues from being located in most crystal structure determinations. Good general agreement between the calculated solution structure and the average structure determined by NMR was found for most of the oligosaccharide linkages.   相似文献   

9.
The influences of electromagnetic fields (EMFs) on bio-energy transport and its mechanism of changes are investigated through analytic and numerical simulation and experimentation. Bio-energy transport along protein molecules is performed by soliton movement caused by the dipole–dipole electric interactions between neighboring amino acid residues. As such, EMFs can affect the structure of protein molecules and change the properties of the bio-energy transported in living systems. This mechanism of biological effect from EMFs involves the amino acid residues in protein molecules. To study and reveal this mechanism, we simulated numerically the features of the movement of solitons along protein molecules with both a single chain and with three channels by using the Runge–Kutta method and Pang’s soliton model under the action of EMFs with the strengths of 25,500, 51,000, 76,500, and 102,000 V/m in the single-chain protein, as well as 17,000, 25,500, and 34,000 V/m in the three-chain protein, respectively. Results indicate that electric fields (EFs) depress the binding energy of the soliton, decrease its amplitude, and change its wave form. Also, the soliton disperses at 102,000 V/m in a single-chain protein and at 25,500 and 34,000 V/m in three-chain proteins. These findings signify that the influence of EMFs on the bio-energy transport cannot be neglected; however, these variations depend on both the strength and the direction of the EF in the EMF. This direction influences the biological effects of EMF, which decrease with increases in the angle between the direction of the EF and that of the dipole moment of amino acid residues; however, randomness at the macroscopic level remains. Lastly, we experimentally confirm the existence of a soliton and the validity of our conclusion by using the infrared spectra of absorption of the collagens, which is activated by another type of EF. Thus, we can affirm that both the described mechanism and the corresponding theory are correct and that EMFs or EFs can influence the features of energy transport in living systems and thus have certain biological effects.  相似文献   

10.
A framework for simulating the coupled physical phenomena that occur in evaporating electrosprays has been developed. This framework comprises a 3D Lagrangian model for droplets dynamics, evaporation, and Coulomb explosions, as well as steady-state 2D Eulerian models for gas flow induced by the droplets motions, the transports of vapor and heat in the gas phase, and the transport of the charged residues left behind by the fully evaporated droplets (residual-charge). To couple these different physics, the Lagrangian code and the four Eulerian ones are solved sequentially in order to attain a fully coupled solution of the global steady-state. This methodology has been applied to three electrospray systems made from solvents of different volatility (acetone, methanol, and n-heptane), with identical droplet size distribution at injection (a lognormal with mean diameter of 8 μm and CV = 10%). All fields converged after just a few (five) sequences of simulation. In the two systems in which the droplets travel fastest (acetone and methanol), conical fringes develop in the contour maps of volumetric rate of generation of residual-charge, which correspond to the first few Coulomb explosions. In the system in which the droplets moved slowest (n-heptane), such contour maps show an unstructured region, instead.

Copyright 2015 American Association for Aerosol Research  相似文献   

11.
Single- and double-wall carbon nanotubes were decorated with organic or inorganic nanomaterials in order to obtain desired electrical transport properties such as a high electrical conductivity or an n-type thermopower. For instance, the electrical conductivity of double-wall carbon nanotubes (DWCNTs) decorated with tetrafluoro-tetracyanoquinodimethane (F4TCNQ) was increased up to 5.9 × 105 S/m, and single-wall carbon nanotubes (SWCNTs) were converted from p-type to n-type with a large thermopower (−58 μV/K) by using polyethyleneimine without vacuum or controlled environment. When inorganic nanoparticles made of Fe and Cu were used for decorating nanotubes, the electrical conductance of the nanotube films was decreased with an enlarged thermopower. On the other hand, Au decorations yielded higher electrical conductances with lower thermopowers. The thermoelectric power factors were improved by ∼180% with F4TCNQ on DWCNTs and ∼140% with Fe on SWCNTs. We believe these transport property changes can be attributed to charge interactions resulted from the difference between the work functions/reduction potentials of nanotubes and nanomaterials. This study shows a first step toward the synthesis of both n-type and p-type conductors with carbon nanotubes, which are essential to thermoelectric energy conversion applications.  相似文献   

12.
Dietary phospholipids have been traditionally known to affect micelle formation. Egg yolk-derived lysophospholipids (LysoPL) are commercially available. We investigated the effects of dietary LysoPL on lymphatic lipid transport. We also compared sn-1 LysoPL and sn-2 LysoPL, which have different fatty acyl esterification positions. Thoracic lymph duct-cannulated rats were fed a diet supplemented with egg yolk-derived sn-1 LysoPL, sn-2 LysoPL, or phospholipids (PL). The amount of lymphatic lipid transport was also evaluated. Time courses of transport were applied to the one-compartment model as one of the pharmacokinetic analyses. The solubility of cholesterol in bile acid micelles was measured. Compared to the PL diet, the sn-1 and sn-2 LysoPL diets significantly reduced the lymphatic transport of cholesterol. There were no differences in the lymphatic PL and TAG transport. There was no difference in cholesterol transport between the sn-1 LysoPL group and the sn-2 LysoPL group; however, the transport rate constant at a decrease in lymphatic cholesterol was lower in the sn-1 LysoPL group than in the sn-2 LysoPL group. Cholesterol solubility in bile acid micelles was significantly decreased in the sn-1 LysoPL and sn-2 LysoPL groups compared to that in the PL group. Dietary LysoPL affects the behavior of intestinal cholesterol and suppresses lymphatic cholesterol transport.  相似文献   

13.
Lipopolysaccharide (LPS), the main cell‐surface molecular constituent of Gram‐negative bacteria, is synthesized in the inner membrane (IM) and transported to the outer membrane (OM) by the Lpt (lipopolysaccharide transport) machinery. Neosynthesized LPS is first flipped by MsbA across the IM, then transported to the OM by seven Lpt proteins located in the IM (LptBCFG), in the periplasm (LptA), and in the OM (LptDE). A functional OM is essential to bacterial viability and requires correct placement of LPS in the outer leaflet. Therefore, LPS biogenesis represents an ideal target for the development of novel antibiotics against Gram‐negative bacteria. Although the structures of Lpt proteins have been elucidated, little is known about the mechanism of LPS transport, and few data are available on Lpt–LPS binding. We report here the first determination of the thermodynamic and kinetic parameters of the interaction between LptC and a fluorescent lipo‐oligosaccharide (fLOS) in vitro. The apparent dissociation constant (Kd) of the fLOS–LptC interaction was evaluated by two independent methods. The first was based on fLOS capture by resin‐immobilized LptC; the second used quenching of LptC intrinsic fluorescence by fLOS in solution. The Kd values by the two methods (71.4 and 28.8 μm, respectively) are very similar, and are of the same order of magnitude as that of the affinity of LOS for the upstream transporter, MsbA. Interestingly, both methods showed that fLOS binding to LptC is mostly irreversible, thus reflecting the fact that LPS can be released from LptC only when energy is supplied by ATP or in the presence of a higher‐affinity LptA protein. A fluorescent glycolipid was synthesized: this also interacted irreversibly with LptC, but with lower affinity (apparent Kd=221 μM ). This compound binds LptC at the LPS binding site and is a prototype for the development of new antibiotics targeting LPS transport in Gram‐negative bacteria.  相似文献   

14.
Interactions among nutrients and plant secondary metabolites (PSM) may influence how herbivores mix their diets and use food resources. We determined intake of a food containing a mix of terpenoids identified in sagebrush (Artemisia tridentata) when present in isoenergetic diets of increasing concentrations of protein (6, 9, 15, or 21% CP) or in isonitrogenous diets of increasing concentrations of energy (2.17, 2.55, 3.30, or 3.53 Mcal/kg). Lambs were offered choices between those diets with or without terpenes or between diets with terpenes and alfalfa hay. Intake of the diets with terpenes was lowest with the lowest concentrations of protein (6%) and energy (2.17 Mcal/kg) in the diets, and highest with diets of 15% CP and 3.53~Mcal/kg. In contrast, when terpenes were absent from the diets, lambs consumed similar amounts of all four diets with different concentrations of protein, and more of the diets with intermediate amounts of energy. When given a choice between the diet with or without terpenes, lambs preferred the diet without terpenes. When lambs were offered choices between terpene-containing diets and alfalfa, energy and protein concentrations influenced the amount of terpenes animals ingested. Energy densities higher than alfalfa, and protein concentrations higher than 6%, increased intake of the terpene-containing diet. Thus, the nutritional environment interacted with terpenes to influence preference such that lambs offered diets of higher energy or protein concentration ate more terpenes when forced, but not when offered alternative food without terpenes. The nutrients supplied by a plant and its neighbors likely influence how much PSM an animal can ingest, which in turn may affect the dynamics of plant communities, and the distribution of herbivores in a landscape. We discuss implications of these findings for traditional views of grazing refuges and varied diets in herbivores.  相似文献   

15.
Jess M. Waller  Ronald K. Eby 《Polymer》1992,33(24):5334-5337
This communication describes the application and extension of a method for calculating the helical parameters with which to describe molecular conformations. The method, which was originally developed by Shimanouchi and others, is applied to a polyimide of 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and 2,2-dimethyl-1,3-(4-aminophenoxy)propane (DMDA) which has eight torsional bonds in the chemical repeat unit. Discrete low energy states for these torsions were determined by Ramanchandran energy maps of sequential dihedral pairs or single bond torsional energy diagrams. The total number of possible low energy conformations for these states is 1152 including conformationally related isoenantiomorphs. The method conveniently generates the conformations for subsequent crystal structure packing and refinement. Consideration of these together with the X-ray data of Cheng and co-workers reduces the number to about 15 with about a 2/1 conformation and a c axis of approximately 49.2 Å. Of these, about half appear to be good candidates for crystal packing.  相似文献   

16.
We report here our preliminary investigations on the mechanism of α-TTP-mediated ligand transfer as assessed using fluorescence resonance energy transfer (FRET) assays. These assays monitor the movement of the model α-tocopherol fluorescent derivative ((R)-2,5,7,8-tetramethyl-chroman-2-[9-(7-nitro-benzo[1,2,5]oxadiazol-4-yl amino)-nonyl]-chroman-6-ol; NBD-Toc) from protein to acceptor vesicles containing the fluorescence quencher TRITC-PE. We have found that α-TTP utilizes a collisional mechanism of ligand transfer requiring direct protein–membrane contact, that rates of ligand transfer are greater to more highly curved lipid vesicles, and that such rates are insensitive to the presence of anionic phospholipids in the acceptor membrane. These results point to hydrophobic features of α-TTP dominating the binding energy between protein and membrane. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

17.
Within the complex network of chemical signals used by termites, trail pheromones and sex pheromones are among the best known. Numerous recent papers map the chemical identity and glandular origin of these pheromones in nearly all major isopteran taxa. In this study, we aimed to describe the sex pheromone and the trail pheromone of a poorly known sand termite, Psammotermes hybostoma. We identified (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol (dodecatrienol) as the sex pheromone released by tergal and sternal glands of female imagos and, at the same time, as the trail pheromone secreted from the sternal gland of workers. We conclude that chemical communication in Psammotermes does not differ from that of most other Rhinotermitidae, such as Reticulitermes, despite the presence of a diterpene as a major component of the trail pheromone of Prorhinotermes to which Psammotermes is presumed to be phylogenetically close. Our findings underline once again the conservative nature of chemical communication in termites, with dodecatrienol being a frequent component of pheromonal signals in trail following and sex attraction and, at the same time, a tight evolutionary relationship between the trail following of working castes and the sex attraction of imagos.  相似文献   

18.
BACKGROUND: Drug delivery systems (DDS) were designed using insulin as model drug and poly (lactic–co‐glycolic) copolymers (PLGA) as polymeric matrix. The carriers were synthesized by direct self‐assembly of the insulin and the polyester under mild conditions. RESULTS: The kind and level of association between the protein and the polymer were studied using computational methods (combined MM2/PM3) and spectroscopic tools (Fourier transform infrared (FTIR), energy dispersive X‐ray (EDX) and X‐ray fluorescence spectroscopy (XFS)). The effect of the number average molecular weight (Mn) of the copolymer on the association efficiency (AE) drug–polymer as well as on the release profile has been explored. Mathematical models were used to predict the insulin release kinetic and mechanism. CONCLUSIONS: Satisfactory protein/PLGA association efficiencies (between 77 and 99%) were registered depending on the Mn of the PLGA. Hydrophobic and hydrophilic interactions were detected between the protein and the polymeric network by computational analysis. In vitro release studies demonstrated that copolyesters of about 8600 and 1500 Da were suitable for the gradual release of insulin while PLGA oligomers of average molecular weight between 700 and 800 Da were unsuitable as DDS. The insulin release kinetics fits well with the Korsmeyer model, following the anomalous transport mechanism. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
Mitochondrial biogenesis is a highly controlled process that depends on diverse signalling pathways responding to cellular and environmental signals. AMP-activated protein kinase (AMPK) is a critical metabolic enzyme that acts at a central control point in cellular energy homeostasis. Numerous studies have revealed the crucial roles of AMPK in the regulation of mitochondrial biogenesis; however, molecular mechanisms underlying this process are still largely unknown. Previously, we have shown that, in cellular slime mould Dictyostelium discoideum, the overexpression of the catalytic α subunit of AMPK led to enhanced mitochondrial biogenesis, which was accompanied by reduced cell growth and aberrant development. Here, we applied mass spectrometry-based proteomics of Dictyostelium mitochondria to determine the impact of chronically active AMPKα on the phosphorylation state and abundance of mitochondrial proteins and to identify potential protein targets leading to the biogenesis of mitochondria. Our results demonstrate that enhanced mitochondrial biogenesis is associated with variations in the phosphorylation levels and abundance of proteins related to energy metabolism, protein synthesis, transport, inner membrane biogenesis, and cellular signalling. The observed changes are accompanied by elevated mitochondrial respiratory activity in the AMPK overexpression strain. Our work is the first study reporting on the global phosphoproteome profiling of D. discoideum mitochondria and its changes as a response to constitutively active AMPK. We also propose an interplay between the AMPK and mTORC1 signalling pathways in controlling the cellular growth and biogenesis of mitochondria in Dictyostelium as a model organism.  相似文献   

20.
Calcium signaling is essential for neuronal function, and its dysregulation has been implicated across neurodegenerative diseases, including Alzheimer’s disease (AD). A close reciprocal relationship exists between calcium signaling and mitochondrial function. Growing evidence in a variety of AD models indicates that calcium dyshomeostasis drastically alters mitochondrial activity which, in turn, drives neurodegeneration. This review discusses the potential pathogenic mechanisms by which calcium impairs mitochondrial function in AD, focusing on the impact of calcium in endoplasmic reticulum (ER)–mitochondrial communication, mitochondrial transport, oxidative stress, and protein homeostasis. This review also summarizes recent data that highlight the need for exploring the mechanisms underlying calcium-mediated mitochondrial dysfunction while suggesting potential targets for modulating mitochondrial calcium levels to treat neurodegenerative diseases such as AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号