首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 726 毫秒
1.
Abstract. For linear processes, semiparametric estimation of the memory parameter, based on the log‐periodogram and local Whittle estimators, has been exhaustively examined and their properties well established. However, except for some specific cases, little is known about the estimation of the memory parameter for nonlinear processes. The purpose of this paper is to provide the general conditions under which the local Whittle estimator of the memory parameter of a stationary process is consistent and to examine its rate of convergence. We show that these conditions are satisfied for linear processes and a wide class of nonlinear models, among others, signal plus noise processes, nonlinear transforms of a Gaussian process ξt and exponential generalized autoregressive, conditionally heteroscedastic (EGARCH) models. Special cases where the estimator satisfies the central limit theorem are discussed. The finite‐sample performance of the estimator is investigated in a small Monte Carlo study.  相似文献   

2.
This paper investigates testing for parameter constancy in models for non‐Gaussian time series. Models for discrete valued count time series are investigated as well as more general models with autoregressive conditional expectations. Both sup‐tests and CUSUM procedures are suggested depending on the complexity of the model being used. The asymptotic distribution of the CUSUM test is derived for a general class of conditional autoregressive models.  相似文献   

3.
Abstract. The dependence structure in multivariate financial time series is of great importance in portfolio management. By studying daily return histories of 17 exchange‐traded index funds, we identify important features of the data, and we propose two new models to capture these features. The first is an extension of the multivariate BEKK (Baba, Engle, Kraft, Kroner) model, which includes a multivariate t‐type error distribution with different degrees of freedom. We demonstrate that this error distribution is able to accommodate different levels of heavy‐tailed behaviour and thus provides a better fit than models based on a multivariate t‐with a common degree of freedom. The second model is copula based, and can be regarded as an extension of the standard and the generalized dynamic conditional correlation model [Engle, Journal of Business and Economics Statistics (2002) Vol. 17, 425–446; Cappiello et al. (2003) Working paper, UCSD] to a Student copula. Model comparison is carried out using criteria including the Akaike information criteria and Bayesian information criteria. We also evaluate the two models from an asset‐allocation perspective using a three‐asset portfolio as an example, constructing optimal portfolios based on the Markowitz theory. Our results indicate that, for our data, the proposed models both outperform the standard BEKK model, with the copula model performing better than the extension of the BEKK model.  相似文献   

4.
Several data‐driven soft sensors have been applied for online quality prediction in polymerization processes. However, industrial data samples often follow a non‐Gaussian distribution and contain some outliers. Additionally, a single model is insufficient to capture all of the characteristics in multiple grades. In this study, the support vector clustering (SVC)‐based outlier detection method was first used to better handle the nonlinearity and non‐Gaussianity in data samples. Then, SVC was integrated into the just‐in‐time Gaussian process regression (JGPR) modeling method to enhance the prediction reliability. A similar data set with fewer outliers was constructed to build a more reliable local SVC–JGPR prediction model. Moreover, an ensemble strategy was proposed to combine several local SVC–JGPR models with the prediction uncertainty. Finally, the historical data set was updated repetitively in a reasonable way. The prediction results in the industrial polymerization process show the superiority of the proposed method in terms of prediction accuracy and reliability. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41958.  相似文献   

5.
The Gaussian mixture autoregressive model studied in this article belongs to the family of mixture autoregressive models, but it differs from its previous alternatives in several advantageous ways. A major theoretical advantage is that, by the definition of the model, conditions for stationarity and ergodicity are always met and these properties are much more straightforward to establish than is common in nonlinear autoregressive models. Another major advantage is that, for a pth‐order model, explicit expressions of the stationary distributions of dimension p + 1 or smaller are known and given by mixtures of Gaussian distributions with constant mixing weights. In contrast, the conditional distribution given the past observations is a Gaussian mixture with time‐varying mixing weights that depend on p lagged values of the series in a natural and parsimonious way. Because of the known stationary distribution, exact maximum likelihood estimation is feasible and one can assess the applicability of the model in advance by using a non‐parametric estimate of the stationary density. An empirical example with interest rate series illustrates the practical usefulness and flexibility of the model, particularly in allowing for level shifts and temporary changes in variance. Copyright © 2014 Wiley Publishing Ltd  相似文献   

6.
Abstract. This article introduces a family of ‘generalized long‐memory time series models’, in which observations have a specified conditional distribution, given a latent Gaussian fractionally integrated autoregressive moving‐average (ARFIMA) process. The observations may have discrete or continuous distributions (or a mixture of both). The family includes existing models such as ARFIMA models themselves, long‐memory stochastic volatility models, long‐memory censored Gaussian models and others. Although the family of models is flexible, the latent long‐memory process poses problems for analysis. Therefore, we introduce a Markov chain Monte Carlo sampling algorithm and develop a set of recursions which makes it feasible. This makes it possible, among other things, to carry out exact likelihood‐based analysis of a wide range of non‐Gaussian long‐memory models without resorting to the use of likelihood approximations. The procedure also yields predictive distributions that take into account model parameter uncertainty. The approach is demonstrated in two case studies.  相似文献   

7.
We study the problem of intervention effects generating various types of outliers in a linear count time‐series model. This model belongs to the class of observation‐driven models and extends the class of Gaussian linear time‐series models within the exponential family framework. Studies about effects of covariates and interventions for count time‐series models have largely fallen behind, because the underlying process, whose behaviour determines the dynamics of the observed process, is not observed. We suggest a computationally feasible approach to these problems, focusing especially on the detection and estimation of sudden shifts and outliers. We consider three different scenarios, namely the detection of an intervention effect of a known type at a known time, the detection of an intervention effect when the type and the time are both unknown and the detection of multiple intervention effects. We develop score tests for the first scenario and a parametric bootstrap procedure based on the maximum of the different score test statistics for the second scenario. The third scenario is treated by a stepwise procedure, where we detect and correct intervention effects iteratively. The usefulness of the proposed methods is illustrated using simulated and real data examples.  相似文献   

8.
We consider inference for the market model coefficients based on simple linear regression under a long memory stochastic volatility generating mechanism for the returns. We obtain limit theorems for the ordinary least squares (OLS) estimators of α and β in this framework. These theorems imply that the convergence rate of the OLS estimators is typically slower than if both the regressor and the predictor have long memory in volatility, where T is the sample size. The traditional standard errors of the OLS‐estimated intercept () and slope (), which disregard long memory in volatility, are typically too optimistic, and therefore the traditional t‐statistic for testing, say, α = 0 or β = 1, will diverge under the null hypothesis. We also obtain limit theorems (which imply slow convergence) for the estimated weights of the minimum variance portfolio and the optimal portfolio in the same framework. In addition, we propose and study the performance of a subsampling‐based approach to hypothesis testing for α and β. We conclude by noting that analogous results hold under more general conditions on long‐memory volatility models and state these general conditions which cover certain fractionally integrated exponential generalized autoregressive conditional heteroskedasticity (EGARCH) models.  相似文献   

9.
In this article, a robust modeling strategy for mixture probabilistic principal component analysis (PPCA) is proposed. Different from the traditional Gaussian distribution driven model such as PPCA, the multivariate student t‐distribution is adopted for probabilistic modeling to reduce the negative effect of outliers, which is very common in the process industry. Furthermore, for handling the missing data problem, a partially updating algorithm is developed for parameter learning in the robust mixture PPCA model. Therefore, the new robust model can simultaneously deal with outliers and missing data. For process monitoring, a Bayesian soft decision fusion strategy is developed which is combined with the robust local monitoring models under different operating conditions. Two case studies demonstrate that the new robust model shows enhanced modeling and monitoring performance in both outlier and missing data cases, compared to the mixture probabilistic principal analysis model. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2143–2157, 2014  相似文献   

10.
In internal rubber‐mixing processes, data‐driven soft sensors have become increasingly important for providing online measurements for the Mooney viscosity information. Nevertheless, the prediction uncertainty of the model has rarely been explored. Additionally, traditional viscosity prediction models are based on single models and, thus, may not be appropriate for complex processes with multiple recipes and shifting operating conditions. To address both problems simultaneously, we propose a new ensemble Gaussian process regression (EGPR)‐based modeling method. First, several local Gaussian process regression (GPR) models were built with the training samples in each subclass. Then, the prediction uncertainty was adopted to evaluate the probabilistic relationship between the new test sample and several local GPR models. Moreover, the prediction value and the prediction variance was generated automatically with Bayesian inference. The prediction results in an industrial rubber‐mixing process show the superiority of EGPR in terms of prediction accuracy and reliability. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41432.  相似文献   

11.
Abstract. This article studies the stability of nonlinear autoregressive models with conditionally heteroskedastic errors. We consider a nonlinear autoregression of order p [AR(p)] with the conditional variance specified as a nonlinear first‐order generalized autoregressive conditional heteroskedasticity [GARCH(1,1)] model. Conditions under which the model is stable in the sense that its Markov chain representation is geometrically ergodic are provided. This implies the existence of an initial distribution such that the process is strictly stationary and β‐mixing. Conditions under which the stationary distribution has finite moments are also given. The results cover several nonlinear specifications recently proposed for both the conditional mean and conditional variance, and only require mild moment conditions.  相似文献   

12.
The traditional and most used measure for serial dependence in a time series is the autocorrelation function. This measure gives a complete characterization of dependence for a Gaussian time series, but it often fails for nonlinear time series models as, for instance, the generalized autoregressive conditional heteroskedasticity model (GARCH), where it is zero for all lags. The autocorrelation function is an example of a global measure of dependence. The purpose of this article is to apply to time series a well‐defined local measure of serial dependence called the local Gaussian autocorrelation. It generally works well also for nonlinear models, and it can distinguish between positive and negative dependence. We use this measure to construct a test of independence based on the bootstrap technique. This procedure requires the choice of a bandwidth parameter that is calculated using a cross validation algorithm. To ensure the validity of the test, asymptotic properties are derived for the test functional and for the bootstrap procedure, together with a study of its power for different models. We compare the proposed test with one based on the ordinary autocorrelation and with one based on the Brownian distance correlation. The new test performs well. Finally, there are also two empirical examples.  相似文献   

13.
Abstract. We propose a non‐parametric local likelihood estimator for the log‐transformed autoregressive conditional heteroscedastic (ARCH) (1) model. Our non‐parametric estimator is constructed within the likelihood framework for non‐Gaussian observations: it is different from standard kernel regression smoothing, where the innovations are assumed to be normally distributed. We derive consistency and asymptotic normality for our estimators and show, by a simulation experiment and some real‐data examples, that the local likelihood estimator has better predictive potential than classical local regression. A possible extension of the estimation procedure to more general multiplicative ARCH(p) models with p > 1 predictor variables is also described.  相似文献   

14.
Abstract. It is shown that the EGARCH model is the degenerate case of Danielsson's [Journal of Econometrics (1994) Vol. 61, pp. 375–400] stochastic volatility model where the disturbance of the transition equation of conditional volatility has zero variance. The Lagrange multiplier test statistic is obtained for the EGARCH model against the stochastic volatility model by expressing the degenerate density under the null hypothesis by the Dirac delta function. The finite sample performance of the test is studied in a small Monte Carlo experiment.  相似文献   

15.
Abstract. We provide simulation and theoretical results concerning the finite‐sample theory of quasi‐maximum‐likelihood estimators in autoregressive conditional heteroskedastic (ARCH) models when we include dynamics in the mean equation. In the setting of the AR(q)–ARCH(p), we find that in some cases bias correction is necessary even for sample sizes of 100, especially when the ARCH order increases. We warn about the existence of important biases and potentially low power of the t‐tests in these cases. We also propose ways to deal with them. We also find simulation evidence that when conditional heteroskedasticity increases, the mean‐squared error of the maximum‐likelihood estimator of the AR(1) parameter in the mean equation of an AR(1)‐ARCH(1) model is reduced. Finally, we generalize the Lumsdaine [J. Bus. Econ. Stat. 13 (1995) pp. 1–10] invariance properties for the biases in these situations.  相似文献   

16.
A time‐varying autoregression is considered with a similarity‐based coefficient and possible drift. It is shown that the random‐walk model has a natural interpretation as the leading term in a small‐sigma expansion of a similarity model with an exponential similarity function as its AR coefficient. Consistency of the quasi‐maximum likelihood estimator of the parameters in this model is established, the behaviours of the score and Hessian functions are analysed and test statistics are suggested. A complete list is provided of the normalization rates required for the consistency proof and for the score and Hessian function standardization. A large family of unit root models with stationary and explosive alternatives is characterized within the similarity class through the asymptotic negligibility of a certain quadratic form that appears in the score function. A variant of the stochastic unit root model within the class is studied, and a large‐sample limit theory provided, which leads to a new nonlinear diffusion process limit showing the form of the drift and conditional volatility induced by sustained stochastic departures from unity. The findings provide a composite case for time‐varying coefficient dynamic modelling. Some simulations and a brief empirical application to data on international Exchange Traded Funds are included. Copyright © 2014 Wiley Publishing Ltd  相似文献   

17.
First, water, methanol, ethanol, acetone, and methyl t‐butyl ether were used as molecular probes to measure the free volume distribution of a type of polyimide membrane material (HQDEA–DMMDA). The methods were equilibrium swelling and separation membrane technologies. From the Kirchheim theory of free volume distribution, a Gaussian distribution function was determined. The Gaussian distribution function was confirmed with tensile testing and wide‐angle X‐ray diffraction of the polyimide films. Second, polyimide/Ag3O4 composite hollow‐fiber membranes were prepared by dry/wet phase inversion. The separation performances of the composite membranes were characterized with a methanol/methyl t‐butyl ether mixture. The change in the separation performances was explained by the free volume distribution function very well. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 871–879, 2005  相似文献   

18.
Data‐driven models are widely used in process industries for monitoring and control purposes. No matter what kind of models one chooses, model‐plant mismatch always exists; it is, therefore, important to implement model update strategies using the latest observation information of the investigated process. In practice, multiple observation sources such as frequent but inaccurate or accurate but infrequent measurements coexist for a same quality variable. In this article, we show how the flexibility of the Bayesian approach can be exploited to account for multiple‐source observations with different degrees of belief. A practical Bayesian fusion formulation with time‐varying variances is proposed to deal with possible abnormal observations. A sequential Monte Carlo sampling based particle filter is used for simultaneously handling systematic and nonsystematic errors (i.e., bias and noise) in the presence of process constraints. The proposed method is illustrated through a simulation example and a data‐driven soft sensor application in an oil sands froth treatment process. © 2010 American Institute of Chemical Engineers AIChE J, 57: 1514–1525, 2011  相似文献   

19.
Continuous‐time autoregressive moving average (CARMA) processes with a non‐negative kernel and driven by a non‐decreasing Lévy process constitute a useful and very general class of stationary, non‐negative continuous‐time processes which have been used, in particular for the modelling of stochastic volatility. In the celebrated stochastic volatility model of Barndorff‐Nielsen and Shephard (2001) , the spot (or instantaneous) volatility at time t, V(t), is represented by a stationary Lévy‐driven Ornstein‐Uhlenbeck process. This has the shortcoming that its autocorrelation function is necessarily a decreasing exponential function, limiting its ability to generate integrated volatility sequences, , with autocorrelation functions resembling those of observed realized volatility sequences. (A realized volatility sequence is a sequence of estimated integrals of spot volatility over successive intervals of fixed length, typically 1 day.) If instead of the stationary Ornstein–Uhlenbeck process, we use a CARMA process to represent spot volatility, we can overcome the restriction to exponentially decaying autocorrelation function and obtain a more realistic model for the dependence observed in realized volatility. In this article, we show how to use realized volatility data to estimate parameters of a CARMA model for spot volatility and apply the analysis to a daily realized volatility sequence for the Deutsche Mark/ US dollar exchange rate.  相似文献   

20.
In this article, limit theory is established for a general class of generalized autoregressive conditional heteroskedasticity models given by ?t = σtηt and σt = f (σt?1, σt?2,…, σt?p, ?t?1, ?t?2,…, ?t?q), when {?t} is a process with just barely infinite variance, that is, {?t} is a process with infinite variance but in the domain of normal attraction. In particular, we show that under some regular conditions, converges weakly to a Gaussian process. Applications of the asymptotic results to statistical inference, such as unit root test and sample autocorrelation, are also investigated. The obtained result fills in a gap between the classical infinite variance and finite variance in the literature. Further, when applying our limiting result to Dickey–Fuller (DF) test in a unit root model with integrated generalized autoregressive conditional heteroskedasticity (IGARCH) errors, it just confirms the simulation result of Kourogenis and Pittis (2008) that the DF statistics with IGARCH errors converges in law to the standard DF distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号