共查询到18条相似文献,搜索用时 33 毫秒
1.
《可再生能源》2017,(11)
提出一种基于改进引力搜索算法(Improved Gravitational Search Algorithm,IGSA),优化LSSVM的短期风电功率预测方法。对引力搜索算法采用混沌映射学习策略初始化种群位置,引入全局记忆策略来改进速度公式,提高最优解质量,利用高斯变异算子及贪婪策略来更新最优解位置。为对比不同核函数对LSSVM预测模型性能的影响,选取了4种常用的核函数(RBF,Sigmoid,Poly及Linear)构建LSSVM预测模型,并用IGSA优化构建的模型。以安徽某一风电场实测数据为例,仿真结果表明,选择RBF核函数的IGSA-LSSVM模型的风电预测性能优于其它核函数;同时,与反向传播神经网络(Back Propagation Neural Network,BPNN)相比,以及与GA,PSO和GSA优化LSSVM相比,IGSA优化LSSVM方法对短期风电功率预测具有更好的稳定性和更高的准确性。 相似文献
2.
针对风速序列的周期性和非平稳性,提出了基于小波变换和LS-SVM相结合的风电场风速预测模型,利用小波变换的多分辩分析法对风速序列进行分解,将风速序列投影到不同尺度上.结合LS-SVM的小样本学习能力强和计算简单等特点,将小波分解后的各风速子序列分别采用LS-SVM进行训练和预测,最后将各预测结果进行叠加得到最终的风速预测值.与LS-SVM风速预测方法进行比较,采用该文提出的方法可明显提高短期风速预测的精度,并具有较强的适应性,具有一定的工程应用前景.最后通过具体实例验证了该模型的有效性. 相似文献
3.
4.
为解决短期电力负荷预测中LSSVM模型的参数难以确定的问题,利用变尺度混沌算法优化LSSVM模型的惩罚因子和核函数参数,构建了MSC-LSSVM模型,并将其应用于湖南省隆回县地区电网各小时点的数据分析和预测中。结果表明,MSC-LSSVM模型避免了人为选择参数的盲目性,预测精度较高。 相似文献
5.
6.
7.
光伏发电功率的预测方法目前分为点值预测和区间预测两类,但点值预测方法难以适应光伏功率的随机性和波动性,因此,该文构建一种基于集合经验模态分解(EEMD)和混沌蚁狮算法(ALOCO)的支持向量机(SVM)光伏功率区间短期预测模型。首先,通过灰色关联度筛选出不同环境条件的相似日样本集,并利用EEMD将光伏出力序列分解成不同的本征模态函数;然后,利用混沌蚁狮算法对SVM的误差惩罚因子C和核函数参数γ进行优化,并利用分位数回归法对光伏的输出功率进行短期区间预测;最后,通过算例数据验证所建立模型的有效性。 相似文献
8.
光伏发电功率预测是减小大规模光伏发电并网对电网造成不良影响的有效手段,对电网调度及光伏电站的优化运行具有重要意义。针对光伏发电功率序列的周期性和非平稳性,本文提出了基于小波变换和支持向量机(Support vector machine, SVM)的预测方法。文中对原始功率序列进行小波分解并单支重构,构成低频趋势信号和高频随机信号,利用具有小样本学习能力强和计算简单等特点的SVM对各小波数据序列分别预测,最终将各预测值合成得到预测功率值。某光伏发电站的实际数据仿真验证了该预测方法的可行性和有效性。 相似文献
9.
为了提高光伏发电功率预测精度,建立了基于ICEEMDAN-DTW和ISMA-WLSSVM的光伏发电功率超短期组合预测模型。首先,根据Pearson相关性分析,确定光辐照度、环境温度以及湿度为光伏发电功率的关键气象影响因素,继而使用改进的自适应白噪声完备集成经验模态分解(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, ICEEMDAN)对历史光伏功率和气象因素进行分解,降低其复杂度和随机波动性,并利用动态时间弯曲(Dynamic Time Warping, DTW)算法确定每个光伏功率子序列的输入特征向量。其次,对最小二乘支持向量机(Least Squares Support Vector Machine, LSSVM)在建模过程中的误差进行权重分配,得到加权最小二乘支持向量机(Weighted Least Squares Support Vector Machine, WLSSVM),其解决了LSSVM模型鲁棒性低的缺陷。最后,通过改进黏菌算法(Improve Slime Moul... 相似文献
10.
准确预测光伏电站输出功率,是促进光伏并网发电,提高电网运行稳定性的主要途径之一.该文提出一种基于粒子群算法最小二乘支持向量机(particle swarm optimization and least squares support vector machine,PSO-LSSVM)的日前光伏功率预测方法,该方法首先利... 相似文献
11.
12.
文章提出了一种基于人工神经网络(ANN)和模拟集成(AnEn)的短期光伏发电预测方法。该方法首先利用数值天气预报模型,以计算天文变量为输入,对光伏发电站点进行72 h的确定性和概率预测;然后分别运用基于ANN,AnEn和ANN+AnEn联合模型方法对3个光伏发电站点进行预测,并进一步利用模拟4 450个光伏电站的综合数据验证了该模型方法的可扩展性;最后利用美国国家大气研究中心(NCAR)的黄石超级计算机,在1个节点(32核)~4 450个节点(141 140核)内测试了该方法的并行运算处理能力。实验结果表明,基于ANN+AnEn联合模型方法可以获得最佳结果,同时证明了该方法适用于大规模并行计算。 相似文献
13.
14.
15.
16.
《可再生能源》2016,(11)
为提高短期风电功率预测精度,针对风电功率波动性大、非周期性和非线性强的特点,提出基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)-相空间重构(phase space reconstruction,PSR)-果蝇优化算法(fruit fly optimization algorithm,FOA)-最小二乘支持向量机(least squares support vector machine,LSSVM)的组合预测方法。首先,运用CEEMD算法把风电功率序列分解为若干个分量,并用PSR算法来确定LSSVM建模过程中各个分量的输入和输出;然后,采用FOA算法优化LSSVM建模中的参数,并用训练好的LSSVM对各个分量进行单独预测;最后,用某风电场的实测数据对该组合预测方法进行验证。结果表明,与单独的LSSVM方法和FOA-LSSVM方法预测结果相比,建立的组合模型预测方法精度更高,对风电功率的短期预测更为有效和适用。 相似文献
17.
风电功率的准确预测对电网的安全运行和经济调度起着重要作用,为进一步提高风电功率的预测精度,文章提出了一种基于CEEMD-CNN-BiGRU-RF模型的短期风电功率预测模型。首先,利用完全集成经验模态分解(CEEMD)对风电功率时间序列进行模态分解;其次,对分解的各个风电功率时间序列利用卷积神经网络(CNN)进行特征提取;再次,建立双向门控循环单元(Bi GRU)模型对各个风电功率时间序列进行预测,叠加各个分量的预测值;最后,对误差进行进一步分析与预测,利用随机森林(RF)进行误差修正,得到最终的风电功率预测值。实验仿真表明,该模型的预测效果明显优于传统模型,模型的平均绝对百分比误差(MAPE)仅为2.09%。 相似文献