首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper discusses high-performance planar suspended inductors for hybrid integration with microwave circuits. The inductors are fabricated using a silicon surface micromachining foundry process and assembled using flip-chip bonding. The silicon substrate is removed, leaving a metal inductor suspended 60 mum above the microwave substrate, thus reducing the parasitic capacitance and loss. Various rectangular, octagonal, and circular inductor geometries with one to five windings are designed with inductance values between 0.65 and 16 nH to demonstrate the flexibility of this technique. Measured self-resonant frequencies are between 5 and 34.8 GHz, with quality factors from 45 to 100. Equivalent circuits extracted from measurement for each inductor type show good agreement with measured impedance and full-wave simulations over frequency. The dc current handling limit is 200 mA  相似文献   

2.
High performance suspended MEMS inductors produced using a flip chip assembly approach are described. An inductor structure is fabricated on a carrier and then flip chip assembled onto a substrate to form a suspended inductor for RF-IC applications with significant improvement in Q-factor and frequency of operation over the conventional IC inductors. A spiral MEMS inductor has been successfully produced on a silicon substrate with an air gap of 26 /spl mu/m between the inductor structure and the substrate. The inductance of the device was measured to be /spl sim/2 nH and a maximum Q-factor of 19 at /spl sim/2.5 GHz was obtained after pad/connector de-embedding.  相似文献   

3.
On-chip spiral micromachined inductors fabricated in a 0.18-μm digital CMOS process with 6-level copper interconnect and low-K dielectric are described. A post-CMOS maskless micromachining process compatible with the CMOS materials and design rules has been developed to create inductors suspended above the substrate with the inter-turn dielectric removed. Such inductors have higher quality factors as substrate losses are eliminated by silicon removal and increased self-resonant frequency due to reduction of inter-turn and substrate parasitic capacitances. Quality factors up to 12 were obtained for a 3.2-nH micromachined inductor at 7.5 GHz. Improvements of up to 180% in maximum quality factor, along with 40%-70% increase in self-resonant frequency were seen over conventional inductors. The effects of micromachining on inductor performance was modeled using a physics-based model with predictive capability. The model was verified by measurements at various stages of the post-CMOS processing. Micromachined inductor quality factor is limited by series resistance up to a predicted metal thickness of between 6-10 μm  相似文献   

4.
Self-heating effects on integrated suspended and bulk spiral inductors are explored. A dc current is fed through the inductors during measurement to emulate dc and radio frequency power loss on the inductor. A considerable drop in Q by /spl sim/18% at 36.5 mW is observed for suspended coils with 3-/spl mu/m aluminum metallization compared to reference inductors on bulk-Si. Simulations in Ansoft's ePhysics indicate that, due to the thermal isolation of the suspended coil, the power loss from resistive self-heating in the metal has to be transferred outwards through the metal turns. This also results in a thermal time constant. This time constant is measured to be /spl sim/10 ms, meaning that it can affect power circuits operating in pulsed mode.  相似文献   

5.
High Q-values of spiral inductors at frequency around 5/spl sim/6 GHz have been achieved with a multilayer spiral (MLS) structure on a high loss silicon substrate. Compared to a one-layer spiral (OLS) inductor, the Q-value of a 4-nH inductor has been improved by about 80% at 5.65 GHz. The impact of the structure on Q-value and resonant frequency has been analyzed, which shows that an optimal height for the via of MLS inductors should be considered when inductors are designed. The fabrication process is compatible with Cu/SiO/sub 2/ interconnect technology.  相似文献   

6.
We propose a tunable microelectromechanical systems integrated inductor with a large-displacement electrothermal actuator. Based on a transformer configuration, the inductance of a spiral inductor is tuned by controlling the relative position of a magnetically coupled short-circuited loop. The magnetic coupling between the inductors can be changed from 0.17 to 0.8 through an electrothermal actuator that can change their relative position by over 140 mum . For the first time, we investigate the impact of this tuning scheme on the inductance and quality factor and propose optimal designs. While a previous preliminary study has focused on keeping the ratio between the two coupled inductors close to one, we find that optimal performance is a weak function of this ratio. Instead, it primarily depends on the resistive loss of the short-circuited coil. Our theoretical studies are backed by a variety of fabricated and measured tunable inductors that show a ~2:1 inductance tuning ratio over a wide frequency range of approximately 25 GHz. In addition, the maximum and minimum quality factors of the tunable inductor are measured to be 26 and 10, respectively, which agree well with the theoretically expected values.  相似文献   

7.
To meet requirements in mobile communication and microwave integrated circuits, miniaturization of the inductive components that many of these systems require is of key importance. At present, active circuitry is used which simulates inductor performance and which has high Q-factor and inductance; however, such circuitry has higher power consumption and higher potential for noise injection than passive inductive components. An alternate approach is to fabricate integrated inductors, in which lithographic techniques are used to pattern an inductor directly on a substrate or a chip. However, integrated inductors can suffer from low Q-factor and high parasitic effects due to substrate proximity. To expand the range of applicability of integrated microinductors at high frequency, their electrical characteristics, especially quality factor, should be improved. In this work, integrated spiral microinductors suspended (approximately 60 μm) above the substrate using surface micromachining techniques to reduce the undesirable effect of substrate proximity on the inductor performance are investigated. The fabricated inductors have inductances ranging from 15-40 nH and Q-factors ranging from 40-50 at frequencies of 0.9-2.5 GHz. Microfilters based on these inductors are also investigated by combining these inductors with integrated polymer filled composite capacitors  相似文献   

8.
In this study, we form air-cavity transmission lines on anodized aluminum substrates. The fabricated transmission lines are microstrip, grounded CPW, and microshield structures. Thick anodized alumina is used as the post of the suspending structures, and it is realized very easily using selective chemical wet-etching. The insertion losses of the fabricated transmission lines on the anodized aluminum are within a range of 0.2-0.26 dB/mm, and they improve greatly after realizing air-cavity structures to 0.043-0.076 dB/mm at 40 GHz.  相似文献   

9.
In this paper, deep submicron complementary metal-oxide-semiconductor (CMOS) process compatible high-Q suspended spiral on-chip inductors were designed and fabricated. In the design, the electromagnetic solver, SONNET, and the finite element program, ANSYS, were used for electrical characteristics, maximum endurable impact force, and thermal conduction simulations, respectively. Based on the design, suspended spiral inductors with different air cavity structures, i.e., diamond opening, circle opening, triangle opening, and full suspended with pillar supports were developed for various applications. Among these structures, the suspended inductor with pillar support possesses the highest Q/sub max/ (maximum of quality factor) of 6.6 at 2 GHz, the least effective dielectric constant of 1.06, and the lowest endurable impact force 0.184 Newton. On the other hand, the spiral inductor with diamond opening has a lowest Q/sub max/ of 4.3, the largest effective dielectric constant of 3.44 and highest endurable impact force 4 Newton. The former is suitable for station telecommunication applications in which the mechanical vibration is not a serious concern, while the latter can be used for mobile telecommunication applications subject to strong mechanical vibrations. Additionally, the conventional on-chip spiral inductor embraced by SiO/sub 2/ with a dielectric constant of 4 was prepared for comparison and found its Q/sub max/ is 3.8 at 1.2 GHz.  相似文献   

10.
A systematic method to improve the quality (Q) factor of RF integrated inductors is presented in this paper. The proposed method is based on the layout optimization to minimize the series resistance of the inductor coil, taking into account both ohmic losses, due to conduction currents, and magnetically induced losses, due to eddy currents. The technique is particularly useful when applied to inductors in which the fabrication process includes integration substrate removal. However, it is also applicable to inductors on low-loss substrates. The method optimizes the width of the metal strip for each turn of the inductor coil, leading to a variable strip-width layout. The optimization procedure has been successfully applied to the design of square spiral inductors in a silicon-based multichip-module technology, complemented with silicon micromachining postprocessing. The obtained experimental results corroborate the validity of the proposed method. A Q factor of about 17 have been obtained for a 35-nH inductor at 1.5 GHz, with Q values higher than 40 predicted for a 20-nH inductor working at 3.5 GHz. The latter is up to a 60% better than the best results for a single strip-width inductor working at the same frequency  相似文献   

11.
双层悬空结构射频微电感制作研究   总被引:1,自引:0,他引:1  
利用MEMS工艺制作了一种双层悬空结构的圆形射频微电感,研究了双层结构微电感中微带线宽度对其性能的影响。研究表明,双层悬空结构的圆形射频微电感不仅具有较大的电感量,而且其Q值也较高;双层微电感的Q值随微带线宽度的增大而升高,而电感量则随微带线宽度的增大而降低。对于微带线宽度为60μm的双层微电感,在频率2~4GHz时,其电感量可达到5nH左右,Q值达到20。  相似文献   

12.
新颖的衬底pn结隔离型硅射频集成电感   总被引:11,自引:6,他引:5  
刘畅  陈学良  严金龙 《半导体学报》2001,22(12):1486-1489
提出了一种新的减小硅集成电感衬底损耗的方法 .这种方法是直接在硅衬底形成间隔的 pn结隔离以阻止螺旋电感诱导的涡流 .衬底 pn结间隔能用标准硅工艺实现而不需另外的工艺 .本文设计和制作了硅集成电路 ,测量了硅集成电感的 S参数并且从测量数据提取了电感的参数 .研究了衬底结隔离对硅集成电感的品质因素 Q的影响 .结果表明一定深度的衬底结隔离能够取得很好的效果 .在 3GHz,衬底 pn结隔离能使电感的品质因素 Q值提高4 0 % .  相似文献   

13.
On-chip solenoid inductors for high frequency magnetic integrated circuits are proposed. The eddy current loss was reduced by dividing the inductor into three consecutive inductors connected in series. The inductor has an inductance of 1.1nH and the maximum quality factor (Q/sub max/) of 50.5. The self-resonant frequency and the operating frequency at Q/sub max/ are greater than 17.5GHz and 16.7GHz, respectively.  相似文献   

14.
提出了一种新的减小硅集成电感衬底损耗的方法.这种方法是直接在硅衬底形成间隔的pn结隔离以阻止螺旋电感诱导的涡流.衬底pn结间隔能用标准硅工艺实现而不需另外的工艺.本文设计和制作了硅集成电路,测量了硅集成电感的S参数并且从测量数据提取了电感的参数.研究了衬底结隔离对硅集成电感的品质因素Q的影响.结果表明一定深度的衬底结隔离能够取得很好的效果.在3GHz,衬底pn结隔离能使电感的品质因素Q值提高40%.  相似文献   

15.
Micro-electromechanical system (MEMS) suspended inductors have been widely studied in recent decades because of their excellent radio frequency performance. However, few studies have been performed on the failure analysis of MEMS suspended inductors under mechanical shock. In this study, the failure of MEMS suspended inductors with a planar spiral coil is investigated through analytical and experimental methods. We present a stress and deformation analysis to study the failure mode of the suspended inductors under shock. To verify the theoretical analysis, MEMS inductors are designed and fabricated, and shock tests are carried out. The shock tests show that the failure mode of the MEMS suspended inductors is a fracture that occurs at the ends of the inductor coil, and the test results agree with the theoretical analysis.  相似文献   

16.
A novel matching method between the power amplifier(PA) and antenna of an active or semi-active RFID tag is presented.A PCB dipole antenna is used as the resonance inductor of a differential power amplifier. The total PA chip area is reduced greatly to only 240×70μm~2 in a 0.18μm CMOS process due to saving two on-chip integrated inductors.Operating in class AB with a 1.8 V supply voltage and 2.45 GHz input signal,the PA shows a measured output power of 8 dBm at the 1 dB compression point.  相似文献   

17.
RF performance of surface micromachined solenoid on-chip inductors fabricated on a standard silicon substrate (10 Ω·cm) has been investigated and the results are compared with the same inductors on glass. The solenoid inductor on Si with a 15-μm thick insulating layer achieves peak quality (Q-) factor of 16.7 at 2.4 GHz with inductance of 2.67 nH. This peak Q-factor is about two-thirds of that of the same inductor fabricated on glass. The highest performance has been obtained from the narrowest-pitched on-glass inductor, which shows inductance of 2.3 nH, peak Q-factor of 25.1 at 8.4 GHz, and spatial inductance density of 30 nH/mm2. Both on-Si and on-glass inductors have been modeled by lumped circuits, and the geometrical dependence of the inductance and Q-factor have been investigated as well  相似文献   

18.
High-Q factor three-dimensional inductors   总被引:2,自引:0,他引:2  
In this paper, the great flexibility of three-dimensional (3-D) monolithic-microwave integrated-circuit technology is used to improve the performance of on-chip inductors. A novel topology for high-Q factor spiral inductor that can be implemented in a single or multilevel configuration is proposed. Several inductors were fabricated on either silicon substrate (/spl rho/ = 30 /spl Omega/ /spl middot/ cm) or semi-insulating gallium-arsenide substrate demonstrating, more particularly, for GaAs technology, the interest of the multilevel configuration. A 1.38-nH double-level 3-D inductor formed on an Si substrate exhibits a very high peak Q factor of 52.8 at 13.6 GHz and a self-resonant frequency as high as 24.7 GHz. Our 4.9-nH double-level GaAs 3-D inductor achieves a peak Q factor of 35.9 at 4.7 GHz and a self-resonant frequency of 8 GHz. For each technology, the performance limits of the proposed inductors in terms of quality factor are discussed. Guidelines for the optimum design of 3-D inductors are provided for Si and GaAs technologies.  相似文献   

19.
A novel tunable radio frequency microelectromechanical system inductor based on the bimorph effect of an amorphous silicon (a-Si) and aluminum structural layer is presented. The outer turns of the inductor have a vertical height of 450 mum when no voltage is applied. A 32% tuning range with high inductance (5.6-8.2 nH) is achieved by the application of a voltage, with the structure completely flattening at 2 V. With no actuation, the peak quality factor is 15, and the self-resonance frequency is 7 GHz. The fact that the device is fabricated on Si in a low-temperature (150 degC) process enhances the potential for system integration  相似文献   

20.
In wireless communication systems, passive elements including tunable capacitors and inductors often need high quality factor (Q-factor). In this paper, we present the design and modeling of a novel high Q-factor tunable capacitor with large tuning range and a high Q-factor vertical planar spiral inductor implemented in microelectromechanical system (MEMS) technology. Different from conventional two-parallel-plate tunable capacitors, the novel tunable capacitor consists of one suspended top plate and two fixed bottom plates. One of the two fixed plates and the top plate form a variable capacitor, while the other fixed plate and the top plate are used to provide electrostatic actuation for capacitance tuning. For the fabricated prototype tunable capacitors, a maximum controllable tuning range of 69.8% has been achieved, exceeding the theoretical tuning range limit (50%) of conventional two-parallel-plate tunable capacitors. This tunable capacitor also exhibits a very low return loss of less than 0.6 dB in the frequency range from 45 MHz to 10 GHz. The high Q-factor planar coil inductor is first fabricated on a silicon substrate and then assembled to the vertical position by using a novel three-dimensional microstructure assembly technique called plastic deformation magnetic assembly (PDMA). Inductors of different dimensions are fabricated and tested. The S-parameters of the inductors before and after PDMA are measured and compared, demonstrating superior performance due to reduced substrate loss and parasitics. The new vertical planar spiral inductor also has the advantage of occupying much smaller silicon areas than the conventional planar spiral inductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号