首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
筒仓中稻谷的空隙率分布研究   总被引:1,自引:2,他引:1  
采用LHT-1粮食回弹模量仪测定稻谷(南粳5055)堆的表层密度及压缩密度,建立筒仓中稻谷堆的密度、应力与粮层深度关系的微分方程组,用数值方法计算筒仓中稻谷密度与粮层深度关系。采用粮食孔隙率测量仪测定表层稻谷(无压缩)孔隙率,由表层孔隙率,表层密度及筒仓深处的密度计算出筒仓中稻谷孔隙率与粮层深度关系。计算结果表明:在直径20米的筒仓中,在30米的筒体部分,南粳5055空隙率变化范围为61.00%~56.32%,在10 m的锥斗中,空隙率变化范围为56.32%~59.77%;在带锥斗筒仓的筒体部分,稻谷堆孔隙率随着粮层深度的增加而减小;到锥斗部分,稻谷堆孔隙率随着粮层深度的增加而逐渐增大。在不同直径的筒仓的筒体部分,在同一深度,稻谷堆孔隙率随着筒仓直径的增大而减小。  相似文献   

2.
采用LHT-1粮食回弹模量仪测定稻谷堆的压缩密度,建立带锥斗筒仓中稻谷堆的密度、应力与粮层深度关系的微分方程组,用数值方法计算带锥斗筒仓中稻谷密度、应力与粮层深度关系,由积分法计算出筒仓中稻谷的储藏总质量。试验结果表明,淮稻5号(含水率为10.38%~18.30%w.b.)的密度随竖直应力(0.495~245.892 kPa)增大而增大(582.772~696.593 kg/m~3)。模型计算结果表明,在带锥斗筒仓的筒体部分,稻谷堆密度随着粮层深度的增加而增大;到锥斗部分,稻谷堆密度随着粮层深度的增加而逐渐减小。在带锥斗筒仓的筒体部分,稻谷堆的竖直应力随着粮层深度的增加而增大;在锥斗部分,稻谷堆的竖直应力则随着粮层深度的增加而减小。在带锥斗筒仓中的筒体部分,稻谷堆的侧向应力随着粮层深度的增大而增大;在筒体与锥斗结合处,稻谷堆的侧向应力突然增加;到了锥斗部分,稻谷堆的侧向应力随着粮层深度的增大先稍增大再逐渐减小。  相似文献   

3.
选定剑桥修正模型作为小麦堆的应力与应变关系本构方程,使用有限元方法计算平房仓中小麦堆的应变分布值,由应变值计算出平房仓中小麦堆的密度分布值.结果 表明:小麦储藏在平房仓中,其堆密度分布是不均匀的.在同一含水率下,小麦平均层密度随着粮层深度的增加而增加,增加率随粮层深度的增加而减小;在同一粮层下,小麦的堆密度随距仓壁的距...  相似文献   

4.
采用LHT-1粮食回弹模量仪测定小麦堆在不同压应力下的压缩密度,结果表明:当小麦[众麦1号,含水率为11.70%~18.18%(w.b.)]的竖直压应力增大(0.631~221.060 k Pa)压缩密度增大(740.50~853.85 kg/m~3),两者可拟合出关系方程。建立平房仓中小麦的密度、应力与粮层深度关系的微分方程组,用数值方法计算平房仓中小麦密度与粮层深度关系,由积分法计算出平房仓中小麦的储藏质量。模型计算结果表明:平房仓中小麦密度随着粮层深度的增加而增大,随着深度增加,密度增加率减小;在一个宽20 m,长40 m的平房仓中,小麦密度从表层的800 kg/m~3增加到10 m深处的833.5 kg/m~3,密度增加了4.1%。在同一深处,密度随平房仓长、宽的尺寸增大而增大,增大值很小。在平房仓中同一深处,密度随含水率的增大而增大,增大值很小。小麦的摩擦角、小麦与仓壁摩擦系数几乎不影响平房仓中的密度。本模型计算了5个实仓中的小麦储藏质量,计算值与粮重实际账面数几乎一致,最大误差为2.63%。  相似文献   

5.
采用LHT-1粮食回弹模量仪测定小麦堆在不同压应力下的压缩密度,实验结果表明:当小麦(众麦1号,含水率为11.70.-18.18 %w.b.)的竖直压应力增大(0.631-221.060 kPa)压缩密度增大(740.50-853.85 kg/m3),两者可拟合出二次关系方程。建立平房仓中小麦的密度、应力与粮层深度关系的微分方程组,用数值方法计算平房仓中小麦密度与粮层深度关系,由积分法计算出平房仓中小麦的储藏重量。模型计算结果表明:平房仓中小麦密度随着粮层深度的增加而增大,随着深度增加,密度增加率减小;在一个20米宽,40米长的平房仓中,小麦密度从表层的800 kg/m3增加到10米深处的833.5 kg/m3,密度增加了4.1%。在同一深处,密度随平房仓长、宽的尺寸增大而增大,增大值很小。在平房仓中同一深处,密度随含水率的增大而增大,增大值很小。小麦的摩擦角、小麦与仓壁摩擦系数几乎不影响平房仓中的密度。本模型计算了5个实仓中的小麦储藏重量,计算值与粮重实际账面数几乎一致,最大误差为2.63%。  相似文献   

6.
使用粮食回弹模量仪测定出稻谷堆的压缩密度与最大主应力(竖直压应力)及储藏时间的关系模型。选定修正剑桥模型作为稻谷堆的应力与应变关系本构方程,使用有限元方法计算出装粮后瞬时平房仓中稻谷层的竖直压应力分布值。由平房仓中稻谷堆各层的竖直压应力和稻谷堆的压缩密度与最大主应力(竖直压应力)及储藏时间的关系模型计算出平房仓中稻谷层的密度与粮层深度及储藏时间的关系模型。结果表明:稻谷堆压缩密度随最大主应力的增加而增大,随储藏时间的增加而增大,稻谷堆压缩密度关于储藏时间和最大主应力的关系模型是ρ=562.87+1.605 6ln(T)+(46.07+1.105ln(T))(1-e-0.000 001 p3v+0.000 2 p2v-0.013 5pv+0.000 3);平房仓中稻谷层密度随粮层深度的增加而增大,随储藏时间的增加而增大,平房仓中稻谷堆密度关于储藏时间和粮层深度的关系模型是ρ=566.94+1.678 1ln(T)+(11.06+0.129 4ln(T)(1-...  相似文献   

7.
粮层阻力是粮食干燥,储粮机械通风等工艺设计中的关键参数,本文主要分析了粮层深度与粮层阻力之间的非线性关系,对糙米,小麦和玉米通风实验实测数据进行了多元回归,结果表明三种粮食的粮层深层深度h的指数均大于1,这对新型高大房仓,浅圆仓和立筒仓的通风系统设计有实际意义。  相似文献   

8.
建立筒仓中大豆分层压缩平衡微分方程,实验测定微分方程中的参数,数值求解压缩平衡微分方程得到筒仓内大豆堆应力分布值;建立筒仓中大豆籽粒堆放模型,求解大豆籽粒堆放模型得出筒仓内大豆堆应力与籽粒压力的关系;实验测定大豆籽粒压缩力与塑性应变关系;设定大豆籽粒产生0.4 %的塑性应变为籽粒损伤阈值,结合筒仓内不同深度大豆堆应力、籽粒压力与塑性应变,给出大豆的堆高安全域。计算与实验结果表明:含水率为8.58%~15.01% w.b.并且储藏时间为60 d~240 d的大豆,在半径为10 m的筒仓内安全堆高的范围是47.6 m~20.6 m;在半径为15 m的筒仓内安全堆高的范围是40.2 m~19.3 m;在半径为20 m的筒仓内安全堆高的范围是37.4 m~18.8 m;筒仓内大豆堆的安全堆高随着含水率的增大而减小,随着筒仓直径的增大而减小,随着储藏期的增大而减小。  相似文献   

9.
通过对不同粮种通风实验中粮堆阻力等相关参数的检测结果可知:单位粮层阻力与粮面表观风速呈显著正相关,多项式二次函数对其拟合度更高;且粮面表观风速相同时大豆粮堆的单位粮层阻力相对较小,玉米次之,稻谷和小麦相对较大,即单位粮层阻力与粮食籽粒的结构、表面的光滑度与粮堆孔隙度等有关。穿网阻力随着粮面表观风速的增大而逐渐增大,两者呈显著正相关,且粮面表观风速增大到一定程度后穿网阻力均会急剧增大,故通风过程中不能盲目选择大风量通风,以避免能耗。而粮堆的通风均匀度与风量关系不大,主要随粮层厚度的增加而逐渐增大,不同粮种的通风均匀度大小关系是:稻谷<小麦<大豆<玉米,这与粮食的籽粒形状、堆叠结构有关。  相似文献   

10.
建立筒仓中油菜籽分层压缩平衡微分方程,实验测定微分方程中的参数,得到筒仓内不同深度油菜籽堆应力分布;建立筒仓中油菜籽籽粒堆放模型,给出筒仓内不同深度油菜籽的应力与籽粒压力的关系;设定油菜籽籽粒产生0.5 %的塑性应变为籽粒损伤阈值,结合筒仓内不同深度油菜籽堆应力分布以及籽粒受力与应变,给出油菜籽的堆高安全域。数值计算结果表明:油菜籽含水率为7.11%~13.52% w.b.时,半径为10 m的筒仓内油菜籽堆高安全域为22.00~45.59 m,半径为15 m的筒仓内油菜籽堆高安全域为19.78~35.97 m,半径为20 m的筒仓内油菜籽堆高安全域为18.87~32.76 m;筒仓内油菜籽的堆高安全域随着含水率的增大而减小,随着筒仓半径的增大而减小。  相似文献   

11.
用电动散装粮食扦样器,分别对高大平房仓的稻谷、小麦、玉米和大豆进行扦样,扦取的样品进行杂质和破碎粒或谷外糙米检验,检验结果分别与套管粮食扦样器和电动吸式粮食扦样器扦取的样品比较。结果表明:电动散装粮食扦样器与套管粮食扦样器之间均无显著差异,其平均值之差符合国家标准规定的重复性要求;电动吸式粮食扦样器均显著高于或高于套管粮食扦样器和电动散装粮食扦样器,其平均值之差超过国家标准规定的重复性要求(杂质含量低的小麦除外)。因此,电动散装粮食扦样器既克服了套管粮食扦样器不能到达粮食深层扦样,又克服了电动吸式粮食扦样器扦取的样品不适于杂质检验的限制和会增加破碎粒或谷外糙米的可能,能满足高大平房仓、立筒仓和浅圆仓等的扦样深度要求,扦取的样品杂质总量和破碎粒或谷外糙米检验结果能代表整仓粮食的原始质量状况,具有广阔的应用前景。  相似文献   

12.
Design and development of low-cost farm silos call for a strong understanding of its structural performance and loads. Limited studies address the effect of stored grains on silos. A farm level bamboo reinforced concrete (BRC) silo with a flat bottom has been designed for the storage of rough rice. A full-scale 3D finite element (FE) model of the BRC silo has been developed and the grain filling in progressive layers simulated in the ANSYS® software. The stored grain and silo body interactions have been modeled considering the characteristic properties of both rough rice as well as the BRC, with minimal simplifications. The numerical results have been compared with the outcomes of classical theories (Jannsen’s and Reimbert’s) and design code (IS 4995-1974). While a significant difference was observed between the lateral stress magnitudes predicted by the numerical and analytical methods, the axial wall stresses from FEM approach deviated from the IS code values by 16%. Contrary to the analytical approaches, FEM predicted non-uniform stress distribution due to the bulk grain at the silo bottom. The numerical approach could also identify the localized peak pressures and stress distribution patterns within the grain layers, which is usually beyond the scope of analytical techniques. Possible reasons for fluctuations in stress patterns are discussed in detail. The study unveiled the intricacies involved in the FEM and the analytical outcomes while predicting the stresses in small and medium scale silos intended for use on farms.  相似文献   

13.
世界各国因储粮害虫对粮食造成的损失非常严重,为了降低粮食在储藏期间的损耗,所以研究储粮通风过程中害虫增长量的变化至为重要。文章基于多孔介质热湿耦合理论,建立了浅圆仓的粮堆内部热湿传递和流动的数学模型以及害虫和熏蒸经验模型,并基于Fortran语言编程,模拟分析了通风状态下粮堆温度、水分含量、储粮害虫增长量以及杀虫剂浓度衰减的变化。结果表明:通风对粮堆内部温度和水分以及害虫生长影响明显。粮堆的水分含量近似对称分布,而受太阳辐射的影响,粮仓不同方向壁面的温度分布并不对称。储粮害虫在粮仓内的数量分布与温度、水分等因素有关,在壁面附近害虫分布较多,且在筒仓中心区域出现分层现象。杀虫剂浓度衰减也受温度的影响,温度高会影响杀虫剂的降解,导致杀虫剂浓度较低  相似文献   

14.
Fenitrothion at 2.5, 5.0 and 6.0 ppm was compared with malathion at 12.0 and 18.0 ppm for the protection of bulk wheat in vertical bin silos, and 10 ppm fenitrothion was compared to 18.0 ppm malathion in horizontal bulk depots. In both types of storage the persistence of the insecticides could be correlated with the temperature and moisture content of the grain. Under the conditions of silo storage, both protectants remained effective against Rhyzopertha dominica, Sitophilus granarius and secondary pests for as long as 19 months. Under the more severe conditions of horizontal bulk storage the higher applications were effective for only 6–7 months. Fenitrothion at one half the application rate of malathion appears to give equivalent protection against the deterioration of stored wheat caused by attack from stored product insect pests.  相似文献   

15.
在广州市南沙区于2018年1月16日~2月7日期间,对装粮高度11 m的稻谷立筒仓(约650 t)采用自然冷空气进行智能化降温通风,分别采用5.5 kW和2.2 kW的离心风机上行式通风,风机运转条件是粮堆与大气温度之差≥3℃,粮堆平衡绝对湿度(EAHg)≦大气平衡绝对湿度(AHa)。结果表明,风机自动化运行时间主要在夜间,采用5.5 kW风机的301号仓粮堆平均温度由19.2℃降到13.8℃,风机运转了72.9h,单位能耗是0.087 kW·h t~(-1)℃~(-1);采用2.2 kW风机的501号仓粮堆平均温度由20.9℃降到12.4℃,风机运转了148.6 h,单位能耗是0.047 kW h t~(-1)℃~(-1),与当地人工控制的吸出式下行降温通风单位能耗比较,显著节约电能54%~75%。两个智能化降温通风仓通风结束后粮堆水分保持不变。与对照仓比较,采用低功率离心风机进行智能化降温通风后的稻谷出米率和加工品质有提高的趋势。这说明稻谷立筒仓智能化通风期间整个粮堆湿热分布均匀,不发生水分迁移。  相似文献   

16.
In the current work, we correlate previously reported data for stored-product beetle populations in three silos from Central Greece, with the respective grain moisture content, temperature and bulk density. The insect numbers were obtained by the use of grain trier samples, and grouped in three zones, the central zone, the median zone and the edge zone, corresponding to the areas close to the center of the bulk, the intermediate area and the peripheral area, close to the walls. On each sampling date and location, there were measurements of moisture content, temperature and bulk density. In general, despite variations among silos, the central zone was warmer, drier and had lower bulk density levels than the other zones. Moreover, the previously reported data for beetle populations indicated that more insects were found in the central zone. Moisture content, temperature and bulk density were well correlated, but none of these parameters were correlated well with insect numbers. The results of the present work suggest that there are simultaneous and associated changes with these three parameters during the storage period, but these changes cannot be used accurately as predictors of insect infestation patterns and distribution. Hence, using these factors as insect density predictors is a complex phenomenon with multiple interactions with stored product insect biological and behavioral parameters.  相似文献   

17.
Temperatures and moisture contents inside a metal silo filled with 20 t of wheat were monitored from August 2003 to October 2004 in Western Canada. In the summer and then repeated in the autumn of 2005, grain moisture contents inside small columns, inserted in the top of the grain bulk in the same metal silo, were measured after 4 and 8 weeks. The columns had the following configurations: 1) both the top and bottom of the column were open; 2) the top of the column was open and the bottom was sealed; and 3) the top of the column was sealed and the bottom was open.During the 15-month period, headspace temperature averaged 2.9 ± 0.2 °C higher than that of the ambient air with a maximum of 18.3 °C and a minimum of 0 °C. There was larger temperature fluctuation in the headspace than inside the grain mass. The average temperature gradient was 5.09 ± 1.24 °C/m inside the grain mass. The highest temperature gradient was 32.4 °C/m and it was located at the center of the bin at 1.6 m high. “Inside” grain had a lower moisture change than the surface grain.Grain in the top section of the column with the column configuration of Top End Open had the largest change of its moisture content, and grain in the middle section of the column with any of the configurations did not change. Grain inside the small columns at different locations in the silo had different moisture movement trends. These trends were consistent with the measured moisture migration in the entire silo. These results confirm that even in a small silo there were temperature gradients large enough to drive air movement and the induced convection currents could cause moisture migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号