共查询到20条相似文献,搜索用时 1 毫秒
1.
2.
3.
4.
5.
6.
7.
本文简要介绍了微带贴片天线的工作原理及圆极化技术,针对谐波探测雷达的使用需求,研究设计了中心频率为2.4GHz的圆极化微带贴片天线。天线采用方形贴片切角的单馈电法实现圆极化,结构简单、成本低、尺寸小。文中详细介绍了天线设计方案和数值仿真结果,并制作了天线实物测试验证其阻抗、方向图、增益等性能。 相似文献
8.
该文设计了一款C波段单馈寄生阵列的宽带圆极化天线。此天线采用紧邻的双层F4B介质基板,通过在方形驱动贴片上开槽及采用寄生阵列的设计实现了圆极化。对天线结构的设计步骤进行说明,研究了各结构对天线阻抗带宽和轴比带宽的影响,并研究了寄生贴片切角长度和驱动贴片上的缝隙宽度对天线轴比和带宽的影响。对天线的圆极化方向图进行了仿真。仿真结果表明,在5.5 GHz时实现了右旋圆极化,最大增益为8.1 dBi。加工并测试了宽带圆极化天线,测试结果与仿真结果基本相符,天线实测的阻抗带宽为1.3 GHz,轴比带宽为1.26 GHz。设计的叠层天线具有结构紧凑,装配简单和轴比带宽大的优点。 相似文献
9.
10.
研究了圆极化微带阵列天线的设计方法。重点讨论了用双馈电正方形单元天线实现圆极化、高增益阵列天线的实现方法,并利用Ansoft HFSS 软件进行仿真分析,仿真结果显示,在工作频带内天线增益>13 dB,驻波<1.3,方向图E面波瓣宽度>33°,H面波瓣宽度>33°。 相似文献
11.
新型左手传输线馈电微带阵列天线 总被引:2,自引:0,他引:2
提出了一种采用复合左右手传输线馈电的新型微带阵列天线.该天线利用左手传输线的相位超前特性来补偿传统的右手传输线所具有的相位滞后,从而保证了天线单元之间的同相位馈电,避免了因相位延迟导致的天线波束偏移,并进一步提高了天线的增益.仿真与实际测试证明:与同类型天线相比,该天线具有尺寸小、频带宽和馈电网络设计简单等优点,可在微波系统中实际使用. 相似文献
12.
设计了一种圆极化(LCP)、采用边缘馈电的椭圆贴片天线。该天线采用单点馈电方式实现圆极化,无需外加相移网络和功率分配器,结构简单,成本低,适合小型化。对所设计的天线采用CST软件进行了仿真,从方向图、S参数值、轴比等方面进行分析,仿真结果验证了设计具有合理性,天线性能达到了设计要求。 相似文献
13.
14.
15.
16.
提出了一种基于顺序相移(SP)馈电网络的宽轴比圆极化微带阵列天线。该天线通过将四个相同的圆形贴片辐射器连接在SP馈电网络的输出端,形成2×2微带阵列天线以实现圆极化性能。为保持馈电网络的紧凑性和圆形贴片辐射器的宽带特性,设计了一种不规则局部接地的方法。为获得天线的定向辐射并提高增益,在介质基板下方7.4 mm处设置一金属反射板。经过HFSS仿真软件优化分析,所提出天线的总尺寸为65 mm×65 mm×8 mm,小于-10 dB阻抗带宽为5~8.6 GHz(52%),3 dB轴比带宽为5.72~8.16 GHz(35%),在圆极化工作频率范围内增益可达10~12 dB。对所提出天线进行实物加工与测试,测试结果和仿真结果较吻合。 相似文献
17.
该文设计了一种新颖的宽带圆极化单极子天线,该天线采用微带馈电模式。天线由C型贴片和改进的地板组成,整个天线尺寸仅为25×25×1 mm3。通过在C型贴片上切角和在地板上增加三角形微扰结构,可以有效增加天线的阻抗带宽和轴比带宽。该文给出了天线的设计流程,从表面电流分布分析了圆极化天线的工作机理。加工了天线实物,并对其进行了测量。仿真和实测结果表明天线具有超宽的阻抗带宽和轴比带宽。天线的工作频带为4.35~12 GHz(相对带宽为93.6%),3 dB轴比带宽为4.15~11.8 GHz(相对带宽为95.9%)。测量了天线的辐射性能和增益特性,实测结果与仿真结果吻合较好,证明了该天线的有效性。该天线可以应用于超宽带无线通信系统和卫星通信系统中。 相似文献
18.
19.
20.
通过对同相馈电十字振子圆极化天线的分析,提出了用振子等效长度缩短模型来定性,分析其实现圆极化的原理.同时利用时域有限差分法对十字振子天线进行仿真.并在2个波长长度范围内找到了实现圆极化的振子尺寸,在满足一定轴比带宽条件下,在垂直于十字振子平面通过十字振子中心的轴线上圆极化轴比可以达到1.166 8.分析了当大线尺寸改变时,圆极化特性的变化规律.为同相馈电十字振子圆极化天线的设计提供了参考. 相似文献