首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
超级电容器是一种绿色储能节能器件,其性能主要是由电极材料所决定的.以疏松的石墨烯(GR)为模板,先后以吡咯(Py)和苯胺(ANi)为单体,采用两步原位聚合法制备了具有"三明治"结构的石墨烯/聚吡咯/聚苯胺(GR/PPy/PANi)复合材料,探索了原料比对复合材料结构、微观形貌、电化学性能的影响.研究表明,Py和ANi分...  相似文献   

2.
采用简便的脉冲电沉积方法一步合成了呈现层-层分布的三维立体结构的PANI/MnO_2/石墨烯三元复合材料,利用XRD和FT-IR等研究了复合物的结构和组成,SEM和TEM表征了复合物的形貌。同时,通过恒流充放电和循环伏安测试研究了该复合物的电化学性能。结果表明,0.5 A·g~(–1)电流密度下的比容量可达1 120 F·g~(–1),且1 000次循环的稳定性高达99%。出色的超电容性能主要源于石墨烯作为基体,其上均匀分布棒状结构的PANI,MnO_2纳米粒子均匀分布于PANI纳米棒上,形成了一种分级的特殊结构。  相似文献   

3.
采用水热法成功合成了CaMoO4/氧化石墨烯(GO)纳米复合材料。通过材料的表面形貌、晶体结构和电化学性能研究合成的纳米复合材料。结果表明,CaMoO4/GO电极在电流密度0.5 A/g时比电容高达571.82 F/g,并且在1 A/g的电流密度下,经过1000次循环后的比电容保持率仍为84%。为了测试电极材料的实际应用效果,全固态超级电容器(ASC)分别使用CaMoO4/GO和活性炭(AC)作为正极和负极进行组装。组装的ASC在功率密度1710.3 W/kg下显示出25.18 W·h·kg-1的能量密度,并且能通过串联4个ASC为红色发光二极管供电。上述结果表明CaMoO4/GO电极材料在高性能储能设备的应用中具有非常大的潜力。  相似文献   

4.
以草酸和十二烷基苯磺酸为电解质,利用电化学方法,基于镍片制备了ZnO质量分数不同(10%~30%)的聚吡咯/氧化锌(PPy/ZnO)纳米复合材料,并对其进行了表征和性能分析。结果表明基于镍片的复合材料中,聚吡咯呈典型的菜花状结构,白色的Zn0颗粒夹杂在PPy中,填充在PPy颗粒间的缝隙中,防止基底与溶液的直接接触,这种结构对基底有着很好的防腐蚀保护性能。而且随着质量比的增加,PPy/Zn0复合材料中的白色ZnO颗粒更为密集。研究发现PPy/ZnO复合材料比纯PPy具有更好的电化学性能,而且随着质量比的增加,PPy/ZnO复合材料的氧化还原可逆性、电化学交换反应与容纳电荷的能力等电化学性能有增强的趋势。  相似文献   

5.
电极材料的孔径结构、尺寸、类型直接影响电极材料的电化学性能。文章利用水热反应与硝酸蒸汽处理两步法制备了三维多孔石墨烯材料,并通过控制硝酸蒸汽处理时间,研究其对电极材料电化学特性的影响。通过扫描电镜、透射电镜、拉曼光谱、X射线衍射等多种测试方法对得到的三维多孔石墨烯进行表征,并利用三电极测试方法,通过循环伏安、恒流充放电和电化学阻抗等电化学测试方法研究其电化学性能。结果表明,所制备的三维多孔石墨烯具有微孔与纳米孔相结合的三维结构,两者的协同作用使得三维多孔石墨烯表现出优异的电化学性能,在1A/g的电流密度下,比电容最高可达191.5F/g。  相似文献   

6.
珊瑚状聚吡咯的制备及其超级电容性能   总被引:3,自引:0,他引:3  
采用化学氧化法以甲苯-4-磺酸钠掺杂制备了珊瑚状聚吡咯。通过FT-IR、SEM等方法对产物进行了结构表征,研究了其电化学电容性能。结果表明:制备的掺杂态聚吡咯具有表面光滑的珊瑚状结构,循环伏安曲线接近于理想的矩形,在充放电整个电位范围内,电位和时间都保持较好的线性关系,单电极比电容可达220F/g。  相似文献   

7.
低温下(0℃)化学氧化合成了盐酸掺杂聚吡咯。分别以聚吡咯和活性炭为电极材料组装成电化学电容器。采用扫描电镜、恒流充放电、循环伏安和交流阻抗测试仪研究了混合电容器的电化学性能。结果表明:低温下合成的聚吡咯呈颗粒状堆积,粒径为100~300nm;电流密度为6×10–3A/cm2时,混合电容器在1mol/LNa2SO4电解液中比电容高达178.6F/g,100次循环后比电容为初始容量的88.4%,漏电流仅为0.16×10–3A/cm2。  相似文献   

8.
采用脉冲电沉积法,于苯胺、浓硫酸和碳纳米管(CNTs)的混合溶液中,制备得到PANI(聚苯胺)/CNTs复合物,并对所制PANI/CNTs复合材料的微观形貌、结构以及电化学性能进行了研究。结果表明,CNTs的加入增大了PANI/CNTs复合物的比表面积,提高了其导电性。PANI/CNTs复合物用作超级电容器电极材料时,其比容量可达420.7 F/g,经500次循环后衰减幅度为8.9%,表现出优良的电化学性能。  相似文献   

9.
电化学法制备聚苯胺/聚乙烯醇导电膜的性能   总被引:8,自引:0,他引:8  
以高氯酸为掺杂剂用电化学氧化聚合法制备了聚苯胺 (PAn) /聚乙烯醇 (PVA)导电复合膜。实验结果表明 ,由该方法制备出的聚苯胺 /聚乙烯醇复合膜具有较好的导电性 ,其电导率最大可达 0 .173S/cm。研究了反应体系中酸的浓度对复合膜的电导率的影响 ,并且结合扫描电子显微镜和红外光谱对该复合膜结构的表征结果对复合膜的形成过程进行了探讨。  相似文献   

10.
采用改良沉淀法制备了氧化镍,并研究了其结构和电化学性能。X射线衍射(XRD)分析表明所制材料为立方晶相的氧化镍,扫描电子显微镜(SEM)观测则显示所制NiO为由薄片堆积而成的直径约为500 nm的花球。电化学性能测试表明:在5 mA条件下,由所制氧化镍制成的电容器的起始比容量为405 F/g,随着循环次数的增加,其比容量减小,到200次时稳定于365F/g(为初始容量的90%)。  相似文献   

11.
新型材料MXene(过渡金属二维碳化物,氮化物和碳氮化物)由于其良好的电化学活性而被广泛应用于储能材料。聚吡咯因其具有稳定的导电性而常用作超级电容器材料。通过原位聚合法成功制备MXene(Ti_3C_2T_x)和聚吡咯(PPy)复合材料。利用扫描电镜(SEM)和X射线衍射仪(XRD)对Ti_3C_2T_x/PPy复合电极材料进行表征,结果表明PPy均匀地包覆在Ti_3C_2T_x表面。这种独特的复合材料展现良好的协同作用,有效提高了电子和离子的传输速率。电化学测试表明:Ti_3C_2T_x和聚吡咯质量比为2∶1时复合材料表现出最好的电化学性能,当电流密度为1 A·g~(-1)时,Ti_3C_2T_x/PPy-2的比电容达到139 F·g~(-1),并且拥有较好的倍率性能。结果表明Ti_3C_2T_x/PPy复合材料可用于制备超级电容器电极材料。  相似文献   

12.
通过水热法制备得到α-Ni(OH)2,在甲酰胺溶剂中,通过机械振荡结合超声对其进行剥离,得到厚度约为1.1 nm的Ni(OH)2纳米片,与氧化石墨烯(GO)悬浮液混合后,静电自组装得到Ni(OH)2/GO,经高温热处理获得NiO/还原氧化石墨烯(rGO)复合材料。同时研究了NiO/rGO的结构、形貌及其用作超级电容器电极材料的电化学性能。形貌表征显示NiO/rGO呈层-层形貌,N2吸-脱附实验表明复合材料存在介孔结构。在KOH电解液中,1 A/g电流密度下NiO/rGO的比容量为1564 F/g,远高于初始Ni(OH)2和单纯的NiO;组装的NiO/rGO//石墨烯水凝胶(GH)非对称超级电容器(ASC)器件,充放电电位窗口为0~1.6 V,10 A/g电流密度下经1000次充放电循环的比容量保持率达84.2%。  相似文献   

13.
在三氯化钌(RuCl3)水溶液中,采用循环伏安法在铜电极表面电沉积氧化钌(RuO2)作为超级电容器电极材料。为了提高材料的电化学性能,在电沉积液中引入了氧化石墨烯(GO)水溶液,制备出RuO2/GO复合电极。采用扫描电镜(SEM)观察两种电极的表面形貌,发现氧化钌及其复合电极经60℃干燥处理1 h后,颗粒更均匀且存在明显的多孔特征,电极材料具有良好的表面特性。电化学测试结果表明,扫描速度为0.1 V/s、工作电位窗口为1 V时,两种电极比电容分别为636.5和938 F/m2,功率密度分别为31.83和46.9 W/m2。因此,RuO2/GO复合电极具有较好的电容特性,适合用作超级电容器电极材料。  相似文献   

14.
以MnO_2为自反应模板,采用一锅法制备了PPy/Fe_3O_4复合材料,对比研究了MnO_2及PPy/Fe_3O_4复合材料的吸波性能。用透射电镜(TEM)、扫描电镜(SEM)、X射线衍射仪(XRD)、傅立叶-红外光谱仪(FT-IR)和矢量网络分析仪(VNA)等分析测试手段对材料进行了微观形貌观测、结构表征、电磁参数测试以及吸波性能评估。结果表明:PPy/Fe_3O_4复合材料在厚度为5.0 mm、频率为6.9 GHz处反射损耗(RL)达到最佳反射损耗-39.5 dB,有效频宽为3.0 GHz。  相似文献   

15.
实用化超电容器的制备与电化学性能的研究   总被引:3,自引:0,他引:3  
使用高比表面积活性炭可以制备不同电容量、不同工作电压的超电容器,高比表面积活性炭的比电容量远高于普通活性炭。10 F(9V)、45 F、600 F的超电容器样品的测试结果表明,高比表面积活性炭电极的孔径结构不会影响电容器大电流充放电容量,电化学性能稳定,高比表面积活性炭是一种待开发的优良的超电容器电极材料。  相似文献   

16.
《微纳电子技术》2019,(6):473-479
采用油浴水解反应法和退火还原法合成氧化铁-碳纳米管/还原氧化石墨烯(Fe_2O_3-CNT/rGO)复合材料。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射(XRD)对Fe_2O_3-CNT/rGO复合材料的微观形貌、组成和晶体结构进行了分析和表征。同时,利用循环伏安法和计时安培滴定法对制备的Fe_2O_3-CNT/rGO电化学传感器对亚硝酸盐的电化学性能进行测试。实验结果表明:制备的Fe_2O_3-CNT/rGO电化学传感器对亚硝酸盐具有较高的灵敏度(0.679μA·μM~(-1)·cm~(-2))、较快的响应时间(3 s)、较低的检测限(0.08μM)、较宽的线性检测范围(0.2~13 000μM)和较强的抗干扰能力。  相似文献   

17.
超级电容器用氧化钌及其复合材料的研究进展   总被引:1,自引:2,他引:1  
介绍了超级电容器(亦称电化学电容器)中赝电容器的工作原理和特点。对性能较好的电极材料氧化钌及其复合材料进行分类。综述了近年来其制备和应用进展,并针对氧化钌材料的高成本,提出解决方法和建议。最后对氧化钌材料的发展前景作了展望。  相似文献   

18.
采用化学沉淀法制备了MnO2/13X分子筛复合材料,并使用XRD对其结构进行了分析。在浓度为1mol·L–1、电位为–0.10~+0.58V的KOH电解液中,应用循环伏安和恒流充放电技术对该复合材料的电化学电容性能进行了研究。结果显示:在制得的MnO2/13X复合材料中,MnO2具有无定形结构。当MnO2质量分数为30%时,在100mA·g–1电流密度下,该复合材料的比电容达到134F·g–1,电化学电容性能良好。  相似文献   

19.
利用苯胺原位化学聚合合成聚苯胺包覆凹凸棒石,再经过高温热处理得到氮掺杂碳包覆凹凸棒石。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、傅立叶转换红外线光谱(FTIR)、差热分析法(DTA)对样品形貌和化学结构进行表征,利用循环伏安法、恒电流充放电及交流阻抗技术研究其用作超级电容器电极材料时的电化学性能。研究表明,氮掺杂碳包覆凹凸棒石在6 mol·L~(–1)的KOH电解液中具有较好的电容性能,在20 m V·s~(–1)的扫速下质量比电容可达161.9 F·g~(–1),且该复合材料具有较小的内阻和良好的电容稳定性。  相似文献   

20.
为寻找高效、环保的方法制备出性能优异的石墨烯超级电容器电极,采用制备氧化石墨的改进法得到酸、中性氧化石墨(S-GO、Z-GO),经微波膨胀得到不同形貌的石墨烯纳米片(WS-GO和WZ-GO),对WS-GO活化得样品HWS-GO;通过SEM、FT-IR和电化学工作站对样品的形貌、组成和电化学性能进行表征分析。结果显示:WS-GO比电容可达222 F/g,可逆性好,商业应用潜力大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号