首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
经验模态分解(Empirical mode decomposition,EMD)自提出以来已广泛用于信号检测与处理,但其存在很多的缺陷,如频率混叠现象等.为了减轻混叠现象,提取真实的频率成分,本文分析了信号及其一阶导数和二阶导数的关系,作出一种用信号二阶导数的极值点处的信号值取代原EMD算法中的信号极值点进行三次样条插值的方法,其余计算流程不变,仍采用镜像拓延法改善端点效应.仿真结果与原EMD计算结果对比表明,基于信号二阶导数改进的算法能准确分解出信号中幅值分量表现不明显的高频信号,具有实用价值.  相似文献   

2.
对经验模态分解算法中的异常事件干扰机制做了深入的探讨,指出发生频率混叠现象时必须满足的两个条件。为了避免出现频率混叠现象,提出了基于动态窗口的局部分解算法。利用信号的时间特征尺度检测出信号的突变并定位局部高频分量,在分解信号的过程中,局部分解算法并不对信号的整个时间区域进行分解,而是以定位好的局部高频分量位置为窗口,进行局部的经验模态分解,分离出高频分量。通过这种局部分解,就可以有效地消除模态间的频率混叠,得到的固有模态函数更可靠地反映了真实物理过程。和现有异常事件处理方法相比,局部经验模态分解算法在理论上和经验模态分解算法更为统一,方法更为简便。通过实例表明了局部经验模态分解算法的有效性。  相似文献   

3.
经验模式分解回顾与展望   总被引:1,自引:0,他引:1  
经验模式分解EMD打破了Fourier变换、小波分解等传统数据分析方法需要预先设定基函数的局限,是一种完全由数据驱动的自适应非线性非平稳时变信号分解方法,可以将数据从高频到低频分解成具有物理意义的少数几个固有模态函数分量和一个余量。首先介绍了原始EMD方法的原理和算法;接着,总结归纳了EMD当前的研究现状,分析了EMD存在的端点效应、模态混叠、运行速度问题及其在二维情况下的问题并对国内外学者解决这些问题的方法进行了概述和比较;最后结合EMD研究存在的难题指出了EMD进一步研究与应用的发展方向。  相似文献   

4.
林丽  周霆  余轮 《计算机工程》2010,36(5):263-265
针对在经验模态分解的过程中由于间断信号造成的模态混叠问题,提出利用对信号作经验模态分解得到的第1个固有模态函数的瞬时频率和幅度定义归一化幅频系数,分离出间断信号。实验结果证明,该方法可以克服间断信号对后续经验模态分解的影响,将间断信号分离为一个固有模态函数。  相似文献   

5.
针对经验模态分解中存在的端点效应及模态混叠现象,提出一种新的改进方法。利用镜像延拓方法对信号两端数据进行延拓后,结合余弦窗函数以解决端点效应对分解结果的影响,再利用高频谐波法结合掩膜信号法抑制EMD分解过程中存在的模态混叠。通过实验对比验证了该方法的有效可行性。  相似文献   

6.
针对经验模态分解过程存在的边界效应问题,提出了利用AR模型进行包络延拓的边界处理算法.该算法通过预测信号的包络可有效地消除经验模态分解中的边界效应影响.仿真实验结果证明该算法有效,而且具有容易实现、适应性强等优点.采用本文的经验模态分解算法处理液位测量数据,取得了比较满意的测量结果.  相似文献   

7.
经验模式分解EMD打破了Fourier变换、小波分解等传统数据分析方法需要预先设定基函数的局限,是一种完全由数据驱动的自适应非线性非平稳时变信号分解方法,可以将数据从高频到低频分解成具有物理意义的少数几个固有模态函数分量和一个余量。首先介绍了原始EMD方法的原理和算法;接着,总结归纳了EMD当前的研究现状,分析了EMD存在的端点效应、模态混叠、运行速度问题及其在二维情况下的问题并对国内外学者解决这些问题的方法进行了概述和比较;最后结合EMD研究存在的难题指出了EMD进一步研究与应用的发展方向。  相似文献   

8.
杨庆  陈桂明  薛冬林 《微机发展》2012,(2):22-24,28
端点效应和模态混叠现象是经验模态分解算法应用中存在的主要问题。在介绍标准经验模态分解算法的基础上,阐述了基于局部积分均值经验模态分解算法的基本原理,提出自适应的端点局部积分均值拟合线的拟合方法。改进算法通过距离相关度函数在待分解信号内部寻找与端点处信号变化趋势相关度最高的一段波形,并用此段波形的局部积分均值拟合线来重新刻画端点处的局部积分均值拟合线,将修正后的局部积分均值拟合线应用于EMD算法筛选过程中。仿真实验结果表明,改进算法有效抑制了模态混叠和端点效应现象,提高了分解的精度和可靠性。  相似文献   

9.
为了提高单通道盲源分离性能,首先由单路信号利用经验模态分解得到一系列本征模函数分量组合成多路信号;其次针对存在模态混叠的本征模函数分量,提出利用信号周期性构造其多路信号、并利用独立分量分析消除模态混叠的有效方法;然后利用互相关性消除上述所得到的多路信号中的虚假分量,并将剩余的分量信号与观测信号构成新的多路信号;最后利用Fast-ICA(fast-independent component analysis)算法分离得到源信号。仿真实验表明该算法能够有效分离源信号,分离性能优于目前已有的基于经验模态分解的单通道盲源分离算法。  相似文献   

10.
针对Wigner-Ville分布(WVD)存在交叉项的问题,提出一种基于经验模态分解(EMD)的WVD交叉项抑制方法,将EMD得到的各固有模态函数去伪后进行WVD计算,将WVD分析结果线性叠加后重构出原始信号的WVD时频分布。仿真结果表明,该方法能有效抑制时频分布的交叉项,保证WVD的时频聚集性,分析信号的调幅调频现象。  相似文献   

11.
基于经验模态分解的算法改进   总被引:2,自引:0,他引:2  
经验模态分解(EMD)算法是Hilbert—Huang变换(HHT)的核心算法,它的分解效果依赖于采样频率的选择,介绍一种新的EMD的采样频率选取方法,并通过仿真信号实验表明该方法分解信号更完全,对电力系统谐波检测分析有一定的实际应用价值。  相似文献   

12.
A novel sifting method based on the concept of the ’local centroids’ of a signal is developed for empirical mode decomposition (EMD), with the aim of reducing the mode-mixing effect and decomposing those modes whose frequencies are within an octave. Instead of directly averaging the upper and lower envelopes, as suggested by the original EMD method, the proposed technique computes the local mean curve of a signal by interpolating a set of ’local centroids’, which are integral averages over local segments between successive extrema of the signal. With the ’centroid’-based sifting, EMD is capable of separating intrinsic modes of oscillatory components with their frequency ratio ν even up to 0.8, thus greatly mitigating the effect of mode mixing and enhancing the frequency resolving power. Inspection is also made to show that the integral property of the ’centroid’-based sifting can make the decomposition more stable against noise interference.  相似文献   

13.
It has been found that envelopes established by extrema in the empirical mode decomposition cannot always depict the local characteristics of a signal very well. This is due in part to the slight oscillations characterized as hidden scales which are almost left untreated during the sifting process. When involving hidden scales, the intrinsic mode function usually contains at a given instance multiple oscillation modes. In view of this, based on inflection points this paper presents a new decomposition algorithm called ‘oblique-extrema empirical mode decomposition’ to settle these problems. With this algorithm, any signal can be decomposed into a finite number of ‘oblique-extrema intrinsic mode functions’ which may possess better-behaved Hilbert transforms and produce more accurate instantaneous frequencies. It can suppress the effect of hidden scales and gets one step further in extracting finer scales. Experimental results demonstrate good performances of this new method.  相似文献   

14.
Iris recognition is known as an inherently reliable technique for human identification. Empirical Mode Decomposition (EMD), an adaptive multi-resolution decomposition technique, appears to be suitable for non-linear, non-stationary data analysis. Based on EMD, a fully data-driven method without using any pre-determined filter or wavelet function, an iris recognition scheme is presented by modifying EMD as a low-pass filter to analyze the iris images. To evaluate the efficacy of the proposed approach, three different similarity measures are used. Experimental results show that three metrics have all achieved promising and similar performance. Therefore, the proposed method demonstrates to be feasible for iris recognition and EMD is suitable for feature extraction.  相似文献   

15.
经验模态分解方法可以有效提取非线性非稳定信号的瞬时特征,但是在利用样条插值获得信号上、下包络过程中存在着棘手的端点问题。有文献提出利用线性神经网络对信号进行延拓的方法,来解决经验模态分解方法中存在的端点问题。提出利用BP和RBF网络对信号进行延拓的方法解决该问题;并利用实验对三种网络的延拓效果进行比较,证明了RBF神经网络的有效性。  相似文献   

16.
为更有效对非线性信号进行识别,提出一种经验模态分解神经网络模型,实现经验模态分解算法与卷积神经网络模型的紧耦合.在EMD层利用经验模态分解算法完成信号的自适应分解;引入权重参数,将分解得到的本征模函数依据其对识别的重要性进行自适应加权重构提取特征,增强时域特征提取能力;将提取的特征通过Softmax层完成信号的识别.将该网络模型应用于美国麻省理工学院提供的MIT-BIH心律失常数据库,对心律失常信号的识别准确率为99.38%,高于其它算法的识别准确率,验证了该模型的有效性.  相似文献   

17.
经验模式分解与Hilbert谱的分析及应用   总被引:1,自引:0,他引:1  
为了验证经验模式分解与Hilbert谱分析的有效性,首先,引出它的概念,指出它在时频变换领域的优点;然后,对其进行了详细阐述,包括瞬时频率求解、经验模式分解过程及Hilbert谱绘制;接着,提出了经验模式分解过程中边缘处理和内在模准则确定问题,并给出了解决方法;最后,用Duffing方程平均频率验证和压电智能结构中压电片局部脱胶试验2个实例对该方法进行了理论和试验验证,结果表明:经验模式分解与Hilbert谱是一种有效的时频信号分析方法。  相似文献   

18.
针对传统基于经验模式分解(EMD)的音频水印算法鲁棒性不强的问题,提出一种基于固有模态函数(IMF)极值的盲音频水印算法.首先对音频信号进行分帧,每个音频帧经过EMD后得到IMF; 接着利用均匀量化的方法将水印信息和同步码嵌入到最后一个IMF的极值中.所提算法的数据嵌入率是46.9~50.3 b/s,且携水印音频保持了原始音频的感知质量.对携水印音频进行加噪、MP3压缩、重新采样、滤波、剪切和重采样攻击后,提取出的水印信息变化不大,算法鲁棒性较好.与时间域和小波域算法相比,提出的算法在保证高数据嵌入率的同时,可以抵抗32 kb/s的MP3压缩攻击.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号