首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
利用化学共沉淀法,制备Co Fe类普鲁士蓝纳米立方(Co Fe PBA)超级电容器电极材料。利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对样品进行物理表征;利用循环伏安法(CV)、恒电流充放电法以及交流阻抗法(EIS)对样品的电化学性能进行研究。结果表明:Co Fe PBA材料为具有面心立方结构的棱长约400 nm的立方颗粒,且表面光滑、颗粒均匀,在氯化钴和铁氰化钾摩尔比为2:1时,产物Co Fe PBA电化学性能最佳,于中性介质1 mol/L硫酸钠溶液中,在1 A/g电流密度下,比电容能达到444.4 F/g,电流密度增大至5 A/g时,比电容仍能保持在423.1 F/g,2000次充放电循环后,在1 A/g电流密度下比电容保持在439 F/g,容量衰减小于2%。  相似文献   

2.
采用循环伏安法在不锈钢网上合成了导电聚苯胺(PANI)。研究了合成扫速分别为5,10,20,50,100 mV/s时聚苯胺电极的性能。结果表明,扫速为5 mV/s时生成的聚苯胺膜孔隙最小,比表面积最大,电阻最小,具有最好的电容性能,在0.1 A/g和1 A/g充放电电流密度下,其比容量分别达860 F/g和485 F/g。  相似文献   

3.
过渡金属氧化物是一种超级电容器电极材料。采用共沉淀法制备了立方体Co类普鲁士蓝(Co-PBA)纳米材料,先将Co-PBA在氮气中进行退火,PBA衍生为掺氮的碳纳米盒,得到产物Co@NC,再在空气中250℃下退火,得到Co3O4@NC纳米复合材料。Co-PBA材料的微观结构为盒状并均匀分布,平均尺寸约为500 nm。在三电极体系下测试其电化学性能,循环伏安(CV)测试结果显示在不同电流密度下曲线具有相似的形状,拥有良好的对称性,说明该材料制备的电极在充放电时的可逆性较好。Co3O4@NC复合材料在电流密度1 A/g时的比电容为1 000.02 F/g,在电流密度5 A/g下充放电2 500次后电容保持率为97.29%,保持了良好的循环稳定性。实验结果表明,Co3O4@NC复合材料是一种很有前途的超级电容器电极材料。  相似文献   

4.
采用溶剂热法制备了Zn-Co@ZIF前驱体,经过500℃氩气退火得到核壳结构的中间体,再经空气退火得到Zn-Co@ZIF衍生的双金属氧化物。研究了空气气氛下不同退火温度对材料结构、形貌的影响,并通过循环伏安(CV)、恒电流充放电(GCD)和电化学阻抗(EIS)的方法对电极的电化学性能进行测试。当在空气气氛下退火温度为600℃时,该电极材料晶型较好,电化学性能也较优异。随着退火温度的升高,材料的团聚增加。样品Zn-Co-600在电流密度为0.5 A/g时,电容量最高达169.5 F/g。在电流密度为1 A/g下循环1000次后的比容量保持率为86.9%,说明在低电流密度下电容的保持性较好。  相似文献   

5.
本文通过电沉积法在泡沫镍上沉积了绿色(Co,Ni)氢氧化物前驱体,并通过退火处理制备了纳米NiCo2O4电极材料。利用扫描电子显微镜(SEM)和透射电子显微镜(TEM)表征了生长在泡沫镍上的纳米NiCo2O4电极材料的形貌特征,成分和显微结构。通过对这些样品进行恒流密度充放电以及循环伏安测试对纳米NiCo2O4电极材料进行了电化学性能评价。结果表明,电化学性能最佳的纳米Ni Co2O4生长厚度为2.80μm,纳米片长度在390~785 nm之间,该电极材料在1 m A/cm2的充放电电流密度下比容量达到了1.4 F/cm2,在30 m A/cm2电流密度下比容量依然保持了0.68 F/cm2。该样品在5 m A/cm2的充放电电流密度下循环充放电2 000次之后依然保持了94%的初始比容量,显示出了较高的循环稳定性。  相似文献   

6.
以普鲁士蓝(PB)作为前驱体,通过固相烧结法在氮气环境中制备FeSe2材料,结合聚吡咯(PPy)优良的导电性能,利用原位氧化聚合法包覆聚吡咯,设计出了FeSe2@PPy复合材料。在三电极体系中,以2 mol/L KOH溶液为电解液、FeSe2@PPy复合材料为工作电极、Hg/HgO电极为参比电极,FeSe2@PPy复合材料表现出了优良的电化学性能:在0.5 A·g-1电流密度下的比电容高达1 177 F·g-1。同时也测量了FeSe2@PPy复合材料电极的循环性能:在0.5 A·g-1电流密度下,经过3 000次充放电测试后比电容保持率为90.5%。电化学测试结果表明该复合材料在超级电容器应用方面具有一定的优势。  相似文献   

7.
金属-有机框架(MOF)衍生的过渡金属硒化物和多孔碳纳米复合材料具有巨大的储能优势,是应用于电化学储能的优良电极材料。采用共沉淀法制备CoFe类普鲁士蓝(CoFe-PBA)纳米立方,并通过静电组装在CoFe-PBA上包覆聚吡咯(PPy)得到CoFe-PBA@PPy;通过在400℃氮气中退火并硒化成功制备了氮掺杂的碳(NC)包覆(CoFe)Se2的(CoFe)Se2@NC纳米复合材料,并对其结构和形貌进行了表征。以(CoFe)Se2@NC为电极制备了超级电容器,测试了其电化学性能,结果表明,在电流密度1 A/g时超级电容器的比电容达到1047.9 F/g,在电流密度5 A/g下1000次循环后具有良好的循环稳定性和96.55%的比电容保持率。由于其性能优越、无毒、成本低和易于制备,未来(CoFe)Se2@NC纳米复合材料在超级电容器中具有非常大的应用潜力。  相似文献   

8.
采用溶剂热法制备了Zn-Co@ZIF前驱体,经过500℃氩气退火得到核壳结构的中间体,再经空气退火得到Zn-Co@ZIF衍生的双金属氧化物。研究了空气气氛下不同退火温度对材料结构、形貌的影响,并通过循环伏安(CV)、恒电流充放电(GCD)和电化学阻抗(EIS)的方法对电极的电化学性能进行测试。当在空气气氛下退火温度为600℃时,该电极材料晶型较好,电化学性能也较优异。随着退火温度的升高,材料的团聚增加。样品Zn-Co-600在电流密度为0.5 A/g时,电容量最高达169.5 F/g。在电流密度为1 A/g下循环1000次后的比容量保持率为86.9%,说明在低电流密度下电容的保持性较好。  相似文献   

9.
《微纳电子技术》2019,(4):274-278
采用滴加法制备了Ni-Al层状双金属氢氧化物。用扫描电子显微镜(SEM)、能量色散谱仪和X射线衍射仪等方法对样品进行形貌和结构表征。结果表明:样品是由大小在几百纳米到几微米的多晶颗粒组成。颗粒具有层状结构且表面粗糙多孔。通过循环伏安法和恒流充放电法对样品的电化学性能进行测试。结果表明:扫描电压速度为5 mV/s时,Ni-Al层状双金属氢氧化物电极的比电容达到1 872 F·g~(-1)。随着扫描电压速度的增加,电极的比电容逐渐降低。当扫描电压速度为100 mV/s时,电极的比电容降到了248 F·g~(-1)。随着充放电电流密度的升高,电极的比电容逐渐降低。当电流密度从0.5 A·g~(-1)升高到3 A·g~(-1)时,电极比电容的保持率约为78.7%。  相似文献   

10.
以葡萄糖为前驱体、柠檬酸镁为模板,先预碳化再结合KOH活化制备高性能多孔碳电极材料。通过扫描电子显微镜(SEM)研究掺杂柠檬酸镁前后样品的形貌结构,发现通过柠檬酸镁模板法制备的活性碳孔径分布更为均匀。通过氮气吸脱附测试发现,以柠檬酸镁为模板,活性碳的比表面积由135.6 m2/g提高到326.13 m2/g。电化学测试结果表明,以柠檬酸镁为模板,电极材料的双电层电容特性得到明显提高。在电流密度为0.5 A/g时,AC-Mg的比电容139.88 F/g远大于AC的比电容31 F/g;在10 A/g的电流密度下,AC比电容保持率为72.5%,AC-Mg比电容保持率增加到87%,电极材料的电阻从1.589Ω下降到1.021Ω,具有更好的导电性,在进行了5 000圈循环测试后,AC-Mg比电容保持率仍为96%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号