首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
为了有效解决临近层卸压瓦斯通过采动裂隙扩散至本煤层工作面,导致采空区上隅角及工作面回风巷瓦斯浓度超限的问题。以某矿9103工作面为工程背景,采用理论分析与数值模拟相结合的手段,对工作面上覆岩层裂隙演化规律进行分析研究。研究表明:采用UDEC数值模拟软件分析工作面上覆岩层破坏时垮落带和裂隙带演化规律及裂隙带高度分布范围与理论计算结果基本一致,覆岩垮落带最大高度4.9 m,裂隙带最高13.44 m。基于此,确定了工作面覆岩高位钻孔设计方案:在9#煤层上方10 m位置的粉砂岩中,采用高位钻孔技术抽采瓦斯,整体抽采浓度较高,进一步验证了高位钻孔布置参数设计的合理性。  相似文献   

2.
利用FLAC3D软件对芦岭煤矿Ⅱ817工作面顶板跨落情况进行模拟分析,初步判定了采空区上覆岩层冒落带、裂隙带和弯曲下沉带的高度,综合判定得出裂隙带岩层范围为18~37 m,合理确立了高位钻孔终孔位置为距8煤顶板20~32 m岩层范围内。在抽采效果考察中,平均每个钻孔的抽采参数瓦斯体积分数均在35%以上,钻孔抽采瓦斯体积分数最大为55.3%,采空区瓦斯治理效果显著。  相似文献   

3.
高振勇 《煤矿开采》2014,(4):126-129
基于采空区上覆岩层裂隙分布规律,根据裂缝带高度、钻孔沿倾向控制范围经验公式,在工作面前方实施了顶板走向高位钻孔。结合天地王坡矿3215工作面裂缝带钻孔试验及抽采数据分析,验证了垮落带和裂缝带高度,并对钻孔压茬距以及合理钻场间距进行了计算,提出了合理的优化建议。工程实践表明:经优化后,顶板走向高位钻孔抽采效果明显,钻场平均瓦斯抽采量9.26m3/min,瓦斯抽采率52.65%,有效降低了采空区和采煤工作面的瓦斯量。  相似文献   

4.
张永平  唐一举  刘迅  陈崇 《煤》2015,(5):1-4
瓦斯抽放钻孔合理深度的研究,可以更加有效地抽采瓦斯。通过对申家庄煤矿2303工作面上覆岩"三带"进行分析,得出该矿2303工作面采空区垮落带高度为9.4~13.8 m,裂隙带高度为37.09~73.4 m,平均55.25 m。通过对U型通风方式下采空区瓦斯运移进行模拟,得出在距采面垂高45~60 m的范围内,是瓦斯富集区。综合分析上覆岩层三带高度和采空区瓦斯运移规律,得出2303工作面瓦斯抽放钻孔终孔位置处于采空区上方45~60 m范围裂隙带内。  相似文献   

5.
《煤》2017,(2):1-4
以南凹寺煤矿30405工作面为研究对象,利用计算机数值模拟的方法研究采空区上覆岩层“三带”分布规律,研究结果表明,该采面垮落带分布范围为采空区上方0~15 m左右,裂隙带分布范围为15~40 m左右。同时,利用理论计算对数值模拟结果进行验证,理论计算结果表明垮落带高度为(9.5±2.2)m、裂隙带高度为(37±5.6)m,两者数据基本吻合,说明计算机数值模拟结果真实可靠。  相似文献   

6.
工作面开挖后,上覆岩层将发生破断及垮落.为获得3109综采工作面覆岩垮落、裂隙带高度,本文采用相似模拟方法试验了工作面开采过程中覆岩破断演化过程.结果表明:直接顶的初次破断是垮落带发育的主要原因,而老顶的第一次周期来压则造成垮落带再次发育,裂隙带高度在老顶初次破断前发育较为缓慢,而在老顶发生破断后快速增加,并最终逐渐趋于稳定,3109工作面垮落带发育高度约12.2 m,裂隙带高度约33.0 m.  相似文献   

7.
煤矿开采后采空区上覆岩层由上而下依次形成垮落带、裂缝带和弯曲下沉带。采用井下钻孔的方法对大佛寺煤矿采空区上覆岩层现场观测,得出了垮落带和裂缝带的发育高度,并理论推算出了其发展规律的二次预测模型。预测结果表明:从距回风巷10m的位置处起,垮落带开始发育,其最大高度距煤层顶板约为0~1.3m,裂缝带最大高度距离煤层顶板27.6m,该模型的获取为大佛寺40106工作面煤的自燃防治及高抽巷瓦斯抽放提供了重要的理论依据。  相似文献   

8.
郝军 《煤》2015,(5):12-14,22
煤层开采过后上覆岩层中形成"上三带",了解复合顶板厚煤层覆岩的三带分布状况对瓦斯抽采、覆岩运动、隔水开采等具有重要的意义。采用理论计算、现场实测分析和UDEC数值模拟等方法,确定余吾煤业S1202工作面覆岩的三带分布状况,为其瓦斯抽采提供理论依据。研究表明:在垂直方向上,垮落带与裂隙带的分界点在29.5~33.4 m之间,裂隙带的高度(垮落带以上)在60~64 m之间。  相似文献   

9.
高位钻孔瓦斯抽放冒落带与裂隙带高度的测定方法   总被引:1,自引:0,他引:1  
基于更准确的测定煤层上覆岩层中"竖三带"的法向分布范围,提高高位钻孔瓦斯抽放效果,初步划分了煤层"竖三带"的法向分布范围,探讨了影响高位钻孔瓦斯抽放效果的关键因素为选择合理层位布置钻孔,而各钻孔的施工参数均应依据采空区内冒落带和裂隙带的高度来量化设计。论述了冒落带和裂隙带高度的现场观测与理论计算方法,并根据这两种计算结果,可统筹设计优化高瓦斯工作面上高位钻孔各抽放孔的施工参数。  相似文献   

10.
基于更准确的测定煤层上覆岩层中“竖三带”的法向分布范围,提高高位钻孔瓦斯抽放效果,初步划分了煤层“竖三带”的法向分布范围,探讨了影响高位钻孔瓦斯抽放效果的关键因素为选择合理层位布置钻孔,而各钻孔的施工参数均应依据采空区内冒落带和裂隙带的高度来量化设计。论述了冒落带和裂隙带高度的现场观测与理论计算方法,并根据这两种计算结果,可统筹设计优化高瓦斯工作面上高位钻孔各抽放孔的施工参数。  相似文献   

11.
准确划分采场上覆岩层"三带"高度,是合理设计顶板高位钻孔终孔层位的关键。采用理论计算、数值模拟和现场考察等方法,对李雅庄煤矿2#煤层综采工作面回采过程中采场上覆岩层"三带"高度和运移规律进行了分析。研究表明:2#煤层上覆岩层冒落带高度为8.6~11.0 m,裂隙带高度为30~35 m,高位钻孔终孔层位设计施工在2#煤层顶板11~30 m范围内较合适。  相似文献   

12.
苌珂 《山东煤炭科技》2021,39(3):163-165
为分析王台铺煤矿XV2317南条带工作面采后的覆岩破坏范围,在工作面风巷内设置两个压水试验钻孔,采用井下压水试验法对采后的破坏范围进行实测分析。得到1#钻孔处垮落带范围为12.45~16.6 m,裂隙带最高位于49.80~53.95 m,2#钻孔处垮落带范围为8.8~13.2 m,裂隙带最高位于57.2~61.6 m。综合两钻孔结果可以确定垮落带高度约为8.8~16.6 m,裂隙带上限为49.8~61.6 m。  相似文献   

13.
为研究寺家庄15106工作面回采过程中上覆岩层裂隙的动态发育规律,基于工作面覆岩地质条件,采用理论分析、数值模拟和相似模型实验的方法研究覆岩裂隙的发育,并划分“三带”。依据矿业控制理论,得到垮落带高度为14.37~17.25 m,裂隙带高度为54.8~72.6 m。基于UDEC程序,模拟得到k2石灰岩底板距离煤层顶板18 m为跨落带高度,k4石灰岩底板距离煤层顶板66 m为裂隙带高度。根据相似模型实验得到垮落带高度为18 m,裂隙带高度为64 m。理论推导、数值模拟和模型实验得到覆岩“三带”高度基本一致,以坚硬的石灰岩高度为准,确定垮落带高度18 m,裂隙带高度66 m,为高抽巷层位选取提供了一定的理论指导。  相似文献   

14.
根据金宝屯煤矿综采工作面地质条件与开采条件,采用理论计算与数值模拟确定了工作面覆岩垮落带和裂隙带的发育高度。理论计算确定工作面垮落带发育高度为5.6~10.6 m,导水裂隙带高度为27.3~38.5 m。利用离散元UDEC模拟确定垮落带发育高度为11~12 m,导水裂隙带高度26~33 m。两种确定方法具有良好的一致性。  相似文献   

15.
为了解决沙曲矿近距离高瓦斯煤层群开采过程中瓦斯超限这一难题,运用理论分析和数值分析相结合的方法对沙曲矿南翼4号煤开采采动裂隙演化规律进行了分析,确定了高位裂隙钻孔组的合理布置位置。结果表明:采空区垮落带和裂隙带高度分别为8、36.5 m,贯通裂隙带距工作面顶板垂高8~23 m,非贯通裂隙带距工作面顶板垂高23~42 m,工作面上方22 m左右裂隙分布密集且覆岩整体结构相对稳定,将钻孔延深至该区域能有效提高瓦斯抽采的浓度、抽采量和稳定性。现场实践表明:利用DDR-1200型千米定向钻机,将钻孔布置在距工作面上方22 m处时,瓦斯抽采效果明显,平均瓦斯抽采体积分数90.68%,平均瓦斯抽采纯量达11.58 m3/min。  相似文献   

16.
针对煤矿采空区上覆岩层裂隙发育,采动裂隙瓦斯流动规律等对合理确定高位钻孔抽采区域的重要性,对采空区上覆岩层的裂隙发育规律和采动裂隙场的瓦斯流动规律进行分析,从采空区覆岩"竖三带"裂隙分布特征、采动裂隙"O"形圈以及U型通风采动裂隙瓦斯流动规律出发,找出采空区对工作面上隅角瓦斯超限影响较大的区域,得出高位钻孔的理论最佳抽采区域大致为工作面后方50 m区域,这个区域的覆岩裂隙发育情况是高位钻孔层位优化设计的关键,为高位钻孔抽采参数优化提供了理论基础。  相似文献   

17.
针对陕北矿区采煤后裂隙带能否导通第四系潜水含水层问题,相似模拟分析了柠条塔矿采动覆岩裂隙空间分布规律,覆岩“三带”裂隙率呈“M”形分布,采空区边缘附近裂隙发育最大,垮落带和裂隙带高度分别约为30、100 m;理论分析得知裂隙带高度约为95 m;现场地表钻孔观测知,垮落带和裂隙带高度分别为30~35 m和95~100 m,与理论分析和相似模拟结果一致。采动覆岩裂隙未导通第四系潜水含水层。  相似文献   

18.
以祁东煤矿高瓦斯突出煤层群开采为工程背景,利用相似模拟试验研究了保护层开采对上覆岩层移动规律的影响,试验结果表明:工作面存在大小周期来压现象,大周期来压步距为18.0~25.0 m,小周期垮落步距约为15.0~17.5 m;分析得出工作面回采后的支承压力分布规律以及来压时动载系数的大小;垮落带最大发育高度为8.0~10.0 m,覆岩离层最大发育高度为23 m。该研究成果为指导采空区高位钻孔及地面井瓦斯抽采参数设计提供了重要的理论依据。  相似文献   

19.
《煤》2017,(7):19-21
针对漳村煤矿2503工作面回采过程中上隅角超限问题,通过对工作面上覆岩层垮落特征分析,研究在回风巷顶板打设高位裂隙钻孔抽采采空区裂隙带瓦斯进行治理。回采过程中钻孔瓦斯抽采量随工作面推进先增大后减小,上隅角和回风流瓦斯涌出量逐渐降低,工作面上隅角瓦斯未出现超限现象。  相似文献   

20.
以山西某矿150403工作面地质条件为背景,运用数值模拟研究了大采高工作面上覆岩层断裂移动特征、裂隙发展、"两带"高度等。研究结果表明:大采高工作面直接顶分层垮落,直接顶第一分层、第二分层垮落后的冒落矸石不能充满采空区,导致直接顶高度增加;采空区上覆岩层的下沉具有明显的滞后性;15#煤层的冒落和裂隙带高度分别为20m和30m,高位钻孔终孔高度在30m抽放效果较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号