首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以葡萄糖为前驱体、柠檬酸镁为模板,先预碳化再结合KOH活化制备高性能多孔碳电极材料。通过扫描电子显微镜(SEM)研究掺杂柠檬酸镁前后样品的形貌结构,发现通过柠檬酸镁模板法制备的活性碳孔径分布更为均匀。通过氮气吸脱附测试发现,以柠檬酸镁为模板,活性碳的比表面积由135.6 m2/g提高到326.13 m2/g。电化学测试结果表明,以柠檬酸镁为模板,电极材料的双电层电容特性得到明显提高。在电流密度为0.5 A/g时,AC-Mg的比电容139.88 F/g远大于AC的比电容31 F/g;在10 A/g的电流密度下,AC比电容保持率为72.5%,AC-Mg比电容保持率增加到87%,电极材料的电阻从1.589Ω下降到1.021Ω,具有更好的导电性,在进行了5 000圈循环测试后,AC-Mg比电容保持率仍为96%。  相似文献   

2.
选用常见的生物质萝藦壳作为碳源,并采用水热碳化法和化学活化法,通过K2CO3和KOH进行活化后,分别得到多孔碳材料并命名为MPJ-KCO和MPJ-KO,与不使用活化剂的样品MPJ-CB进行对比,MPJ-KO具有丰富的微孔和介孔,且比表面积达到1586 m2/g。在扫描速率5 mV/s下,MPJ-KO电极比电容达149.9 F/g。在电容去离子(CDI)脱盐实验中,MPJ-KO电极脱盐量达到16.20 mg/g。通过这项研究,不仅可以最大化废弃生物质的价值,还提供了其在CDI脱盐中的潜在应用。  相似文献   

3.
《微纳电子技术》2019,(4):274-278
采用滴加法制备了Ni-Al层状双金属氢氧化物。用扫描电子显微镜(SEM)、能量色散谱仪和X射线衍射仪等方法对样品进行形貌和结构表征。结果表明:样品是由大小在几百纳米到几微米的多晶颗粒组成。颗粒具有层状结构且表面粗糙多孔。通过循环伏安法和恒流充放电法对样品的电化学性能进行测试。结果表明:扫描电压速度为5 mV/s时,Ni-Al层状双金属氢氧化物电极的比电容达到1 872 F·g~(-1)。随着扫描电压速度的增加,电极的比电容逐渐降低。当扫描电压速度为100 mV/s时,电极的比电容降到了248 F·g~(-1)。随着充放电电流密度的升高,电极的比电容逐渐降低。当电流密度从0.5 A·g~(-1)升高到3 A·g~(-1)时,电极比电容的保持率约为78.7%。  相似文献   

4.
以氧化石墨烯为原料,通过水热处理得到石墨烯水凝胶,浸渍KOH溶液后进一步高温活化制备了高比表面积的三维多孔石墨烯,系统地研究了KOH活化剂用量对石墨烯多孔结构和电容性能的影响规律。研究结果表明,随KOH用量增加,三维多孔石墨烯的比表面积增加,多孔结构更加发达,比容量增大。所制备的三维多孔石墨烯的比表面积最高可达2133 m~2·g~(-1),在1 mol·L~(-1) Et_4NBF_4/AN的有机电解液中于0.2 A·g~(-1)电流密度下的比容量高达108 F·g~(-1),循环和倍率性能优异。优异的电化学性能,结合简单的制备工艺,使得这种方法制备的三维多孔石墨烯成为极具应用前景的超级电容器电极材料。  相似文献   

5.
《微纳电子技术》2019,(3):195-199
共价有机框架(COF)材料是一种特殊的结晶性有机多孔材料,具有多种有机官能团结构,同时有着非常低的骨架密度以及较高的比表面积。通过熔融热法制备TpPa-COF材料并与导电性能优异的多壁碳纳米管(MWCNT)复合制得TpPa-COF@MWCNT纳米复合材料,复合材料的微观形貌通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)进行表征,通过循环伏安法对用于超级电容器的TpPa-COF@MWCNT纳米复合材料的电化学性能进行研究。实验验证了该复合材料在不同扫描速度下的循环伏安曲线均呈现优异的双电层电容特性。当电流密度高达1 A·g-1时,该复合材料的比电容仍达到25 F·g-1,在2 A·g-1的电流密度下测得5 000次循环后比电容的保持率略高于100%,表现出良好的大电流充放电性能和应用前景。  相似文献   

6.
以松木作为生物模板和碳源,以Co(NO_3)_2·6H_2O作为钴源,煅烧制备多孔CoO/Co/C复合电极材料。通过X-射线衍射(XRD),扫描电子显微镜(SEM),N_2等温吸附-脱附(BET)对复合材料的结构和形貌进行表征。结果表明,复合电极材料遗传了木材模板的生物形貌特点和多级孔道结构,BET表面积为369.2 m~2/g。CoO/Co/C电极具有较好的电化学性能,在1 A/g电流密度下比电容达760 F/g,在电流密度5 A/g下循环充放电500次后,电容保持率为73.7%。  相似文献   

7.
雷鑑铭  陈小梅 《半导体学报》2015,36(8):083006-5
采用溶胶-凝胶法和水热合成反应法分别制备了氧化钌和氧化锰电极材料。进而采用胶体法制备了不同配比的氧化钌/氧化锰复合电极材料。利用扫描电镜和X射线衍射仪分别对电极材料的形貌及其结构进行表征。通过循环伏安法、恒流充放电、交流阻抗谱对复合电极进行电化学性能测试。结果表明:在氧化钌中加入适量的氧化锰的有助于降低氧化钌的成本和提高氧化钌的阻抗特性,当氧化锰的含量为60wt%时,在38%的H2SO4溶液中,扫描速度为20mV/s时,复合电极的比电容为438F/g,内阻为0.304Ω,且在经过300次循环充放电后,比容量仍保持92.5%,可作为较理想的超级电容器电极材料。  相似文献   

8.
采用快速、简便的两步合成法,将RuO_2纳米粒子均匀地负载在氮掺杂多孔碳(NPCs)上,形成RuO_2/NPCs复合材料。首先以壳聚糖为前驱体,SiO_2纳米颗粒为硬模板,制备出比表面积高、呈三维多孔结构的氮掺杂多孔碳材料;在此基础上,将RuO_2纳米粒子通过溶胶-凝胶法均匀负载到NPCs碳骨架的表面和孔隙中,得到RuO_2/NPCs-800复合材料。研究结果表明,RuO_2均匀负载在NPCs的碳骨架上,有效地提高了复合材料的导电性;同时,电化学性能测试显示,RuO_2对复合材料的电化学性能有显著提高,当电流密度为0.5 A/g时,RuO_2/NPCs-800复合材料的比电容高达411.5 F/g,相当于同等条件下NPCs(123.9 F/g)的3.3倍;同时显示较好的循环稳定性,在5 A/g电流密度下,5000次循环后,只有6.3%比电容降低。  相似文献   

9.
电极材料的孔径结构、尺寸、类型直接影响电极材料的电化学性能。文章利用水热反应与硝酸蒸汽处理两步法制备了三维多孔石墨烯材料,并通过控制硝酸蒸汽处理时间,研究其对电极材料电化学特性的影响。通过扫描电镜、透射电镜、拉曼光谱、X射线衍射等多种测试方法对得到的三维多孔石墨烯进行表征,并利用三电极测试方法,通过循环伏安、恒流充放电和电化学阻抗等电化学测试方法研究其电化学性能。结果表明,所制备的三维多孔石墨烯具有微孔与纳米孔相结合的三维结构,两者的协同作用使得三维多孔石墨烯表现出优异的电化学性能,在1A/g的电流密度下,比电容最高可达191.5F/g。  相似文献   

10.
以杏胡壳为原料,依次采用高温炭化和表面氧化改性的方法制备活性炭电极材料;采用扫描电子显微镜(SEM)表征材料的形貌;室温下,在三电极电化学体系,以2 mol/L的KOH溶液作为电解液,通过循环伏安、恒流充放电、电化学交流阻抗和循环稳定测试分析炭电极材料的电化学性能。研究结果表明:经硝酸氧化改性后的杏胡壳活性炭的综合电化学性能得到了显著提高,在0.5 A/g电流密度下,杏胡壳活性炭质量比电容达到196 F/g。在2 A/g的电流密度下充放电循环2500次后,电容保持率达到99%,展现出优异的电化学性能。  相似文献   

11.
RuO2作为一种比较优秀的电极材料,在超级电容器中具有较大应用,但RuO2电容性能受限于颗粒粒径大小以及分散性。为解决RuO2颗粒容易团聚和分散性较差的问题,以RuCl3·nH2O为前驱体,采用新型脉冲电沉积法在泡沫Ni上电沉积RuO2作为超级电容器的电极材料。并使用扫描电子显微镜、X射线衍射仪以及电化学工作站表征材料的表面微观形貌、物相组成和电化学性能。结果表明:分别电沉积15 min和30 min, RuO2在Ni上生长为一层50 nm和150 nm厚度均匀的薄膜;电化学性能测试表明其内阻较低以及充放电时间较长;电沉积15 min的P15样品在20 mV/s扫描速率下具有576 F/g的比电容,在1 A/g电流密度下具有400 F/g的比电容。因此,脉冲电沉积法制备的RuO2材料具有比较优异的性能,在超级电容器的电极材料制备中具有一定的应用前景。  相似文献   

12.
在三氯化钌(RuCl3)水溶液中,采用循环伏安法在铜电极表面电沉积氧化钌(RuO2)作为超级电容器电极材料。为了提高材料的电化学性能,在电沉积液中引入了氧化石墨烯(GO)水溶液,制备出RuO2/GO复合电极。采用扫描电镜(SEM)观察两种电极的表面形貌,发现氧化钌及其复合电极经60℃干燥处理1 h后,颗粒更均匀且存在明显的多孔特征,电极材料具有良好的表面特性。电化学测试结果表明,扫描速度为0.1 V/s、工作电位窗口为1 V时,两种电极比电容分别为636.5和938 F/m2,功率密度分别为31.83和46.9 W/m2。因此,RuO2/GO复合电极具有较好的电容特性,适合用作超级电容器电极材料。  相似文献   

13.
付承菊  李杰  郭冬云 《微纳电子技术》2007,44(11):1000-1003
以多孔阳极氧化铝膜为模板制备纳米结构材料具有独特的优越性,得到了广泛的关注。介绍了多孔阳极氧化铝膜的形成机理、结构类型和在草酸溶液中制备多孔氧化铝模板的工艺。在本实验中,使用高纯铝片(99.99%)和0.3 mol/L浓度的草酸,利用电化学二次阳极氧化法制备出多孔阳极氧化铝模板,用SEM对其形貌进行了观测,得到的模板孔径在50~70 nm,孔间距约为100 nm。  相似文献   

14.
石墨烯的微波法制备及其电化学电容性能的研究   总被引:1,自引:1,他引:0  
以天然鳞片石墨为原料,采用改进的Hummers方法制备了氧化石墨,然后通过微波剥离还原氧化石墨制备了石墨烯,并利用红外光谱、扫描电镜和透射电镜对其进行了表征。以所制石墨烯为电极材料、1 mol/L的TEMABF4/PC为电解液制备了超级电容器,并对其电化学性能进行了研究。结果表明:经过微波剥离,氧化石墨的含氧基团已基本完全分解,所得石墨烯为表面具有大量褶皱的薄层。所制电容器具有良好的电容性能,在扫描速度为10 mV/s情况下,其单电极比容量为102 F/g,比能量则高达22.1 Wh/kg。  相似文献   

15.
以废弃的中药废渣作为前驱体,Ni(NO3)2为原位造孔剂,尿素为氮源,采用水热法进行氮原子掺杂改性,再经预碳化-活化法制备氮掺杂生物质碳(Ni-N-CMW)。研究表明制备的生物质碳材料具有丰富的孔隙结构,改性掺杂的生物质碳材料Ni-N-CMW比表面积和平均孔径分别为2234.17 m2·g-1和1.86 nm。对生物质碳材料进行电化学性能测试,结果表明氮掺杂改性生物质碳材料比电容为405 F·g-1,明显高于未掺杂的生物质碳(256 F·g-1),且在电流密度增加至8 A·g-1时,Ni-N-CMW比电容依然能达到332 F·g-1,电容保持率高达82.1%。除此之外,在5000次循环充放电结束后仍能保持91.2%的比容量,具有良好的循环稳定性。本研究不仅提供了一种回收利用中药废渣的方法,而且为进一步发展中药废渣在电容器电极材料领域的应用提供了理论依据。  相似文献   

16.
以玉米芯碳渣为原材料,通过高温热解法制得多孔碳(PC),并以此为基体,以硝酸镍和硫酸钴为原料,通过水热-煅烧两步法成功制备了NiCo_2O_4/PC复合电极材料。利用扫描电子显微镜(SEM)、X射线粉末衍射(XRD)和X射线光电子能谱(XPS)等手段对该复合材料的形貌和结构进行了表征。在三电极系统中,通过循环伏安和恒电流充放电测试表明NiCo_2O_4/PC复合材料的电容性能较好,在1 A/g的电流密度下,其比电容达到497 F/g。  相似文献   

17.
《微纳电子技术》2020,(2):125-129
通过水热法和浸渍煅烧法,在泡沫镍基底上成功制备Co_3O_4-ZnO复合纳米材料,通过X射线光电子能谱分析(XPS)测定材料的元素组成,通过X射线衍射(XRD)测定材料的晶格结构,通过扫描电子显微镜(SEM)对材料的表面形貌进行表征。在6 mol/L的KOH电解液中,对Co_3O_4-ZnO复合纳米材料进行循环伏安、恒流充放电、交流阻抗和循环充放电测试。结果表明,在1 A/g的电流密度下,材料的比电容为1 248.2 F/g,1 000次循环之后,比电容保留率为84.94%,本实验所制备的Co_3O_4-ZnO复合纳米材料在超级电容器电极材料应用中展现出良好的前景。  相似文献   

18.
利用聚合物支撑法制备活性炭基碳膜材料,应用于超级电容器电极材料。研究了浓酸改性时聚合物支撑对碳膜的结构和电化学性能的影响。采用扫描电镜(SEM)、氮气等温吸脱附(BET)等方法表征材料的微观结构,采用循环伏安、恒流充放电和交流阻抗等研究其电化学电容性能。结果表明,聚合物支撑法制备的碳膜在1 A·g~(–1)的电流密度下的比电容为128.9 F·g~(–1),低于纯活性炭的比容量(173.3 F·g~(–1));但是,该碳膜在浓酸改性后的比电容达到了185.6 F·g~(–1),远高于浓酸改性的活性炭(71.1 F·g~(–1))。主要原因是支撑聚合物在高温热处理留下的碳基支撑点对于活性炭丰富的孔道结构具有保护作用。  相似文献   

19.
为开发高效储存性能的锂离子电池(LIB),利用简单的溶剂热反应合成一维Co-硝基三乙酸(NTC)前驱体,与三维石墨烯(3DG)组装并高温退火后,制备了多维度、多孔的3DG/CoSe2@纳米线(NW)负极材料。通过一系列的表征证明在纳米结构中,CoSe2纳米粒子嵌入一维多孔碳NW中,该一维多孔碳NW被封装在3DG中。3DG/CoSe2@NW用作LIB负极材料时,由于其独特的纳米结构,在0.1 A·g-1电流密度下100次循环后比容量为725.6 mA·h·g-1,在2 A·g-1的大电流密度下进行500次的循环后,容量保持率为92.5%。电化学测试结果表明,以3DG/CoSe2@NW为电极的LIB具有高比容量和优异的循环稳定性。  相似文献   

20.
为了制备高体积比电容活性炭微球(AMCMB),以KOH/NaOH为复合活化剂,在850℃下对中间相沥青微球(MPMB)进行活化处理。考察了KOH/NaOH复合活化剂不同组份质量比对AMCMB收率、振实密度及比电容的影响。结果表明:随着NaOH含量的增加,AMCMB的比电容呈现先增加后减小的趋势,并在质量比ζ(KOH:NaOH)=5:1时达到最大值81F/cm3,其孔径以微孔为主,中孔含量较高,平均孔径约为2.21nm,比表面积达2788m2/g,适合用作超级电容器电极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号