首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
通过水热法制备得到α-Ni(OH)2,在甲酰胺溶剂中,通过机械振荡结合超声对其进行剥离,得到厚度约为1.1 nm的Ni(OH)2纳米片,与氧化石墨烯(GO)悬浮液混合后,静电自组装得到Ni(OH)2/GO,经高温热处理获得NiO/还原氧化石墨烯(rGO)复合材料。同时研究了NiO/rGO的结构、形貌及其用作超级电容器电极材料的电化学性能。形貌表征显示NiO/rGO呈层-层形貌,N2吸-脱附实验表明复合材料存在介孔结构。在KOH电解液中,1 A/g电流密度下NiO/rGO的比容量为1564 F/g,远高于初始Ni(OH)2和单纯的NiO;组装的NiO/rGO//石墨烯水凝胶(GH)非对称超级电容器(ASC)器件,充放电电位窗口为0~1.6 V,10 A/g电流密度下经1000次充放电循环的比容量保持率达84.2%。  相似文献   

2.
以松木作为生物模板和碳源,以Co(NO_3)_2·6H_2O作为钴源,煅烧制备多孔CoO/Co/C复合电极材料。通过X-射线衍射(XRD),扫描电子显微镜(SEM),N_2等温吸附-脱附(BET)对复合材料的结构和形貌进行表征。结果表明,复合电极材料遗传了木材模板的生物形貌特点和多级孔道结构,BET表面积为369.2 m~2/g。CoO/Co/C电极具有较好的电化学性能,在1 A/g电流密度下比电容达760 F/g,在电流密度5 A/g下循环充放电500次后,电容保持率为73.7%。  相似文献   

3.
以杏胡壳为原料,依次采用高温炭化和表面氧化改性的方法制备活性炭电极材料;采用扫描电子显微镜(SEM)表征材料的形貌;室温下,在三电极电化学体系,以2 mol/L的KOH溶液作为电解液,通过循环伏安、恒流充放电、电化学交流阻抗和循环稳定测试分析炭电极材料的电化学性能。研究结果表明:经硝酸氧化改性后的杏胡壳活性炭的综合电化学性能得到了显著提高,在0.5 A/g电流密度下,杏胡壳活性炭质量比电容达到196 F/g。在2 A/g的电流密度下充放电循环2500次后,电容保持率达到99%,展现出优异的电化学性能。  相似文献   

4.
采用水热法成功合成了CaMoO4/氧化石墨烯(GO)纳米复合材料。通过材料的表面形貌、晶体结构和电化学性能研究合成的纳米复合材料。结果表明,CaMoO4/GO电极在电流密度0.5 A/g时比电容高达571.82 F/g,并且在1 A/g的电流密度下,经过1000次循环后的比电容保持率仍为84%。为了测试电极材料的实际应用效果,全固态超级电容器(ASC)分别使用CaMoO4/GO和活性炭(AC)作为正极和负极进行组装。组装的ASC在功率密度1710.3 W/kg下显示出25.18 W·h·kg-1的能量密度,并且能通过串联4个ASC为红色发光二极管供电。上述结果表明CaMoO4/GO电极材料在高性能储能设备的应用中具有非常大的潜力。  相似文献   

5.
通过湿法纺丝工艺成功制备了纳米硅/还原氧化石墨烯复合纤维材料,并对其进行形貌表征与电化学性能测试。纳米硅颗粒嵌入石墨烯层间褶皱的结构具有限制硅材料在储锂过程中体积膨胀的作用,适于作为锂离子电容器负极。同时,研究了锂离子电容器多孔活性炭正极材料的双电层电容特性,通过组装成对称超级电容器,对其电化学性能进行测试,并结合材料的形貌,分析其作为锂离子电容器正极的合理性。为使正负极电荷匹配,分别对负极硅碳纤维和正极活性炭材料组装的锂离子半电池的倍率、循环稳定性、电化学阻抗等电化学性能进行了测试。结果表明,纳米硅/还原氧化石墨烯复合纤维材料的比容量最高可达826.2 mA·h/g(在电流密度为0.2 A/g时),活性炭比容量可达39.9 mA·h/g。组装成的锂离子电容器在合理的匹配条件下,充放电首圈循环比容量可达58.2 mA·h/g (在电流密度为0.2 A/g时),能量密度为26.8 W·h/kg,循环100圈后,比容量保持率降至41.7%。  相似文献   

6.
《微纳电子技术》2020,(3):183-187
采用湿法纺丝的方法制备了石墨烯纤维无纺布电极,并将该电极应用于超级电容器。电化学测试结果表明,160μm厚的石墨烯纤维无纺布电极质量比容量高达164 F·g~(-1)(电流密度为0.1 A·g~(-1)时),面积比容量为910 mF·cm~(-2)(电流密度为1 mA·cm~(-2)时),当将两片相同大小的160μm厚的石墨烯纤维无纺布叠加作为一个电极进行测试时,面积比容量高达1 800 mF·cm~(-2)。电流密度从1 mA·cm~(-2)升高到20 mA·cm~(-2)时,面积比容量保持率为62%(560 mF·cm~(-2)),表明石墨烯纤维无纺布电极具有很好的倍率性能。在10 A·g~(-1)的电流密度下循环10 000次后,容量保持率为79.5%,表明石墨烯纤维无纺布电极具有良好的循环稳定性。因此,石墨烯纤维无纺布电极以其新颖的制备技术,在柔性电子器件中具有良好的应用前景。  相似文献   

7.
采用化学反应共沉淀法制备出Zn2+和PO43-阴阳离子复合掺杂的α-Ni(OH)2粉体材料.通过对其微结构表征和电化学性能的测试分析结果表明,随着阳离子Zn2+含量相对增加,阴离子PO43-含量相对减少,晶胞参数α和C逐渐增大,当把掺入Zn2+,PO43-的摩尔百分比为23.4%,5.21%时的α-Ni(OH)2样品作为MH-Ni电池的正极活性材料时,电化学阻抗和扩散电阻较小,电池在以80 mA/g恒电流充电5 h,40 mA/g恒电流放电,终止电压为1.0 V的充放电制度下,具有1.34 V较高的放电中值电压,放电比容量为335.31 mA·h·g-1,而且在强碱溶液中稳定存在,30次充放电循环后没有相变化,放电比容量保持率为94%.  相似文献   

8.
电极材料的孔径结构、尺寸、类型直接影响电极材料的电化学性能。文章利用水热反应与硝酸蒸汽处理两步法制备了三维多孔石墨烯材料,并通过控制硝酸蒸汽处理时间,研究其对电极材料电化学特性的影响。通过扫描电镜、透射电镜、拉曼光谱、X射线衍射等多种测试方法对得到的三维多孔石墨烯进行表征,并利用三电极测试方法,通过循环伏安、恒流充放电和电化学阻抗等电化学测试方法研究其电化学性能。结果表明,所制备的三维多孔石墨烯具有微孔与纳米孔相结合的三维结构,两者的协同作用使得三维多孔石墨烯表现出优异的电化学性能,在1A/g的电流密度下,比电容最高可达191.5F/g。  相似文献   

9.
Zn2+、Al3+替代纳米α相氢氧化镍制备正交试验研究   总被引:3,自引:0,他引:3  
本文采用多离子替代制备出纳米α-Ni(OH)2电极材料。XRD测试表明其晶型为α型,TEM观察表明粒子形状不规则,大小在20-30 nm左右。通过对Zn2 、Al3 离子替代量,表面活性剂种类,阴离子种类和反应温度的正交试验优化,得出最佳的工艺参数,并合成出质量电化学容量为316 mA·h/g的电极材料(相同制备工艺得到的日本田中化学球镍电极容量仅为220 mA·h/g)。  相似文献   

10.
本文通过电沉积法在泡沫镍上沉积了绿色(Co,Ni)氢氧化物前驱体,并通过退火处理制备了纳米NiCo2O4电极材料。利用扫描电子显微镜(SEM)和透射电子显微镜(TEM)表征了生长在泡沫镍上的纳米NiCo2O4电极材料的形貌特征,成分和显微结构。通过对这些样品进行恒流密度充放电以及循环伏安测试对纳米NiCo2O4电极材料进行了电化学性能评价。结果表明,电化学性能最佳的纳米Ni Co2O4生长厚度为2.80μm,纳米片长度在390~785 nm之间,该电极材料在1 m A/cm2的充放电电流密度下比容量达到了1.4 F/cm2,在30 m A/cm2电流密度下比容量依然保持了0.68 F/cm2。该样品在5 m A/cm2的充放电电流密度下循环充放电2 000次之后依然保持了94%的初始比容量,显示出了较高的循环稳定性。  相似文献   

11.
硫化铜(CuS)具有优异的导电性(电导率为10-3 S·cm-1),在能源领域具有广泛的应用前景。为了进一步提高CuS作为锂离子电池负极材料时的比容量,对CuS进行改性。通过在室温液相条件下的歧化反应将硫单质与CuS进行复合,提升了其电化学性能。实验结果表明,合成的CuS@7S复合材料在0.05~0.5 A·g-1的不同电流密度下都有较高的比容量和较高的库伦效率,CuS@7S复合材料在0.05 A·g-1电流密度下的放电比容量为1 075 mA·h·g-1,相比于CuS,其得到了极大的提高。表明S与CuS的复合可为电化学储能提供更多的活性物质,改善材料的导电性,成功提升电极材料比容量。  相似文献   

12.
通过添加碳纳米管共沉淀的方法制备了Fe3O4-CNTs复合材料。研究发现,CNTs不仅可以降低复合材料作为锂离子电池负极的阻抗,而且对活性物质Fe3O4起到很好的支撑作用,极大地提高了Fe3O4在充放电过程中的电化学稳定性。在0.5 A/g的电流密度下Fe3O4-CNTs循环200圈后的放电比容量保持在1406 mAh/g。在10 A/g的大电流密度下循环,第100圈时Fe3O4-CNTs的放电比容量稳定在230 mAh/g左右。循环至第9999圈时,Fe3O4-CNTs的比容量下降至179 mAh/g,只损失了50 mAh/g,充放电效率高达99.98%。Fe3O4-CNTs复合材料在大电流密度超长循环的背景下表现出优异的性能,对负极材料的开发有重要的意义。  相似文献   

13.
有机双电层电容器用活性炭电极的修饰   总被引:5,自引:2,他引:3  
利用石墨、炭黑、碳纳米管三种导电碳材料,对高比表面积活性炭进行掺杂修饰,制备有机电解液双电层电容器用薄膜电极。经电化学测试发现,在 1 mol/L 的 LiPF6/EC-DEC(体积比 1∶1)溶液中,经不同导电材料修饰后的活性炭电极,其单电极比容量和大电流充放电性能均有较大改善。其中,掺杂 10%(质量分数)碳纳米管的活性炭电极,在 330 mA/g 电流密度下的单电极比容量可达 81 F/g,比未掺杂活性炭电极 60 F/g 的比容量提高了 35%;电流密度从 60 mA/g 增至 330 mA/g,该电极的容量保持率为 79.4%。  相似文献   

14.
《微纳电子技术》2020,(2):119-124
以柠檬酸为原料,通过碳化制备石墨烯量子点(GQD)溶液,对制备的石墨烯量子点溶液进行超声使石墨烯量子点吸附在石墨毡表面。采用场发射扫描电子显微镜(FE-SEM)、X射线光电子能谱(XPS)和喇曼光谱对石墨烯量子点修饰的石墨毡进行表征。通过循环伏安(CV)曲线、电化学阻抗谱(EIS)和计时电位法研究其电化学性能。测试发现,该石墨毡电极在电流密度1 mA·cm-2下比电容高达2 394 F/g,在电流密度4 mA·cm-2下经过5 000次循环后稳定性达到95%。结果表明石墨烯量子点修饰的石墨毡电极具有优异的电化学性能,可以成为极具应用前景的超级电容器的电极材料。  相似文献   

15.
以普鲁士蓝(PB)作为前驱体,通过固相烧结法在氮气环境中制备FeSe2材料,结合聚吡咯(PPy)优良的导电性能,利用原位氧化聚合法包覆聚吡咯,设计出了FeSe2@PPy复合材料。在三电极体系中,以2 mol/L KOH溶液为电解液、FeSe2@PPy复合材料为工作电极、Hg/HgO电极为参比电极,FeSe2@PPy复合材料表现出了优良的电化学性能:在0.5 A·g-1电流密度下的比电容高达1 177 F·g-1。同时也测量了FeSe2@PPy复合材料电极的循环性能:在0.5 A·g-1电流密度下,经过3 000次充放电测试后比电容保持率为90.5%。电化学测试结果表明该复合材料在超级电容器应用方面具有一定的优势。  相似文献   

16.
过渡金属氧化物是一种超级电容器电极材料。采用共沉淀法制备了立方体Co类普鲁士蓝(Co-PBA)纳米材料,先将Co-PBA在氮气中进行退火,PBA衍生为掺氮的碳纳米盒,得到产物Co@NC,再在空气中250℃下退火,得到Co3O4@NC纳米复合材料。Co-PBA材料的微观结构为盒状并均匀分布,平均尺寸约为500 nm。在三电极体系下测试其电化学性能,循环伏安(CV)测试结果显示在不同电流密度下曲线具有相似的形状,拥有良好的对称性,说明该材料制备的电极在充放电时的可逆性较好。Co3O4@NC复合材料在电流密度1 A/g时的比电容为1 000.02 F/g,在电流密度5 A/g下充放电2 500次后电容保持率为97.29%,保持了良好的循环稳定性。实验结果表明,Co3O4@NC复合材料是一种很有前途的超级电容器电极材料。  相似文献   

17.
利用化学共沉淀法,制备Co Fe类普鲁士蓝纳米立方(Co Fe PBA)超级电容器电极材料。利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对样品进行物理表征;利用循环伏安法(CV)、恒电流充放电法以及交流阻抗法(EIS)对样品的电化学性能进行研究。结果表明:Co Fe PBA材料为具有面心立方结构的棱长约400 nm的立方颗粒,且表面光滑、颗粒均匀,在氯化钴和铁氰化钾摩尔比为2:1时,产物Co Fe PBA电化学性能最佳,于中性介质1 mol/L硫酸钠溶液中,在1 A/g电流密度下,比电容能达到444.4 F/g,电流密度增大至5 A/g时,比电容仍能保持在423.1 F/g,2000次充放电循环后,在1 A/g电流密度下比电容保持在439 F/g,容量衰减小于2%。  相似文献   

18.
为了改善Fe3O4作为锂离子电池负极材料时循环稳定性差的问题,以铁基沸石咪唑酯框架结构材料(Fe-ZIF)为前驱体,使用多巴胺通过聚合反应与其复合,再与石墨烯通过静电吸附作用组装,经过煅烧碳化,制备了Fe3O4@NC/G复合材料。研究结果表明,多巴胺与石墨烯的引入有效提高了Fe3O4在充放电过程中的电化学稳定性。在0.1 A·g-1电流密度下,充放电循环30圈,Fe3O4@NC/G的放电比容量为1005.6 mAh·g-1。当电流密度为2 A·g-1时,经过300圈循环,其放电比容量仍有838.3 mAh·g-1。Fe3O4@NC/G复合材料优异的电化学性能归因于独特的结构设计,这对其他负极材料的构筑提供了一定的参考价值。  相似文献   

19.
用水热反应法分别合成了氧化钌(Ru O_2)、多壁碳纳米管(MWCNT)、还原氧化石墨烯(r GO)的二元及三元复合材料,再以此类复合材料制作了电极。采用循环伏安、交流阻抗、恒电流充放电等方法研究了其电化学性能,用扫描电子显微镜(SEM)对其形貌进行了表征。结果表明:三元复合材料能明显提高电极的比容量(562 F/g)和导电性,高于二元复合材料比容量。其中采用层层组装工艺制备的复合电极,比容量达到906 F/g,内阻0.298?。  相似文献   

20.
以氧化石墨烯为原料,通过水热处理得到石墨烯水凝胶,浸渍KOH溶液后进一步高温活化制备了高比表面积的三维多孔石墨烯,系统地研究了KOH活化剂用量对石墨烯多孔结构和电容性能的影响规律。研究结果表明,随KOH用量增加,三维多孔石墨烯的比表面积增加,多孔结构更加发达,比容量增大。所制备的三维多孔石墨烯的比表面积最高可达2133 m~2·g~(-1),在1 mol·L~(-1) Et_4NBF_4/AN的有机电解液中于0.2 A·g~(-1)电流密度下的比容量高达108 F·g~(-1),循环和倍率性能优异。优异的电化学性能,结合简单的制备工艺,使得这种方法制备的三维多孔石墨烯成为极具应用前景的超级电容器电极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号