首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
采用柠檬酸络合法,制备了尖晶石结构的LiCr0.5Mn1.5O4正极材料。通过循环伏安、电化学阻抗谱、恒流充放电等方法,测试其电化学性能。结果表明:铬离子的加入不但增加了锰离子的平均化合价,有效抑制了Jahn-Teller效应,而且达到了5V的工作电压,稳定了尖晶石结构。材料存在一个活化过程,最大放电比容量达到了145.85mAh·g–1。经过30次充放电循环之后,放电比容量仍然稳定在121.33mAh·g–1,显示了良好的循环性能,为高电位锂离子电池应用提供了良好的应用前景。  相似文献   

2.
采用湿法球磨制备了锂离子电池用混合正极材料LiNi0.5Co0.2Mn0.3O2/LiFePO4。通过X射线衍射(XRD)和扫描电镜(SEM)表征了材料的结构和形貌,采用恒流充放电测试、循环伏安测试(CV)和电化学阻抗谱测试(EIS)方法研究了混合正极材料LiNi0.5Co0.2Mn0.3O2/LiFePO4的电化学性能。结果表明:混合正极材料LiNi0.5Co0.2Mn0.3O2/LiFePO4的晶体结构完好,碳包覆的纳米LiFePO4颗粒较好地包覆在LiNi0.5Co0.2Mn0.3O2表面。含质量分数15% LiFePO4的混合正极材料LiNi0.5Co0.2Mn0.3O2/LiFePO4电化学性能优良,0.2C首次充放电比容量为181.40 mAh?g–1,首次充放电效率为90.79%;1.0C循环50次后放电比容量为169.89 mAh?g–1,容量保持率为97.80%;3.0C循环5次后的放电比容量为162.22 mAh?g–1,容量保持率仍有89.43%;60 ℃高温存储7 d后,容量保持率和容量恢复率分别为86.48%和97.32%。  相似文献   

3.
采用固相法制备了LiFe0.8Mn0.2-xLaxPO4/C(x=0,0.025,0.050)复合材料.通过XRD、SEM和恒流充放电测试对材料的晶体结构、形貌和电化学性能进行研究.结果表明少量的La掺入并未影响到LiFe0.8Mn0.2PO4/C的晶体结构,但显著改善了材料的电化学性能.LiFe0.8Mn0.175La0.025PO4/C在0.1C,0.5C,1C,2C和5C倍率下的首次放电比容量分别为154.7,145.0,135.3,125.4和118.1mAh/g,此外,材料还表现出较好的循环性能,LiFe0.8Mn0.175La0.025PO4/C在1C倍率下循环30次后,容量保持率为99.5%.  相似文献   

4.
以NaOH为沉淀剂,聚乙二醇400(PEG400)为分散剂,采用改进的化学沉淀法制备了前驱体粉末Sn(OH)2,在不同温度下煅烧得到了SnO2纳米颗粒.运用X射线衍射、扫描电镜、恒流充放电、循环伏安法等手段对所制材料的结构、表面形貌和电化学性能进行了研究.结果表明:采用改进的化学沉淀法可以得到平均粒度为80nm左右的SnO2纳米颗粒,其中700℃下煅烧合成的SnO2性能最佳,其首次放电比容量和充电比容量分别为1576.3mAh/g和836.7mAh/g,首次库仑效率为53.1%.经过20次循环充放电后,其比容量仍有411.4mAh/g.  相似文献   

5.
为了提高锂离子电池尖晶石锰酸锂正极材料的循环性能和倍率性能,采用柠檬酸辅助溶胶-凝胶法制备了LiMn2–xGaxO4(x=0,0.02,0.05,0.07)正极材料。研究了Ga掺杂对所制材料性能的影响。结果表明:制得的LiMn2–xGaxO4具有单一的尖晶石结构。当Ga3+掺杂量为x=0.05时,LiMn2–xGaxO4首次放电比容量为117.1 mAh/g,经过95次循环后,放电容量保持率高达97.9%;在高倍率4C条件下,首次放电比容量为100.9 mAh/g,30次循环后放电比容量为102.4 mAh/g,具有优异的倍率性能。  相似文献   

6.
以NaOH为沉淀剂,聚乙二醇400(PEG400)为分散剂,采用改进的化学沉淀法制备了前驱体粉末Sn(OH)2,在不同温度下煅烧得到了SnO2纳米颗粒。运用X射线衍射、扫描电镜、恒流充放电、循环伏安法等手段对所制材料的结构、表面形貌和电化学性能进行了研究。结果表明:采用改进的化学沉淀法可以得到平均粒度为80nm左右的SnO2纳米颗粒,其中700℃下煅烧合成的SnO2性能最佳,其首次放电比容量和充电比容量分别为1 576.3mAh/g和836.7 mAh/g,首次库仑效率为53.1%。经过20次循环充放电后,其比容量仍有411.4 mAh/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号