首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The protooncogene HER2/neu encodes a 185-kDa transmembrane protein with extensive homology to the epidermal growth factor receptor. It is overexpressed in several human cancers of epithelial origin, such as pancreatic cancer. Previously, we demonstrated that cytotoxic T lymphocytes (CTL) derived from breast, ovarian, and non-small cell lung cancer recognized a peptide derived from HER2/neu. To evaluate whether this HLA-A2-binding peptide is a tumor-associated antigen (TAA) in pancreatic cancer, the ability of HER2/neu-reactive CTL to lyse human pancreatic carcinoma cells was tested. CTL were generated from tumor-associated T lymphocytes from HLA-A2+ HER2/neu+ breast and ovarian cancer patients. All CTL recognized autologous and allogeneic HER2/ neu+ tumor cells in an HLA-A2-restricted fashion. Furthermore, all CTL recognized p654-662 (GP2) derived from HER2/neu. These CTL also recognized HER2/neu+ pancreatic cancer cells in an HLA-A2-restricted fashion. HER2/neu+ HLA-A2- pancreatic cancer were not or only poorly lysed. Repeated stimulation of HLA-A2+ PBL from pancreatic cancer patients using the HER2/neu-derived peptide resulted in specific recognition of this peptide and, more importantly, HER2/neu+ pancreatic tumors in an HLA-A2-restricted fashion. Autologous HLA-A2+ fibroblasts or HLA-A2+ malignant melanoma cells were not recognized. HLA-A2- peptide-stimulated T lymphocytes showed no significant cytotoxicity. These results demonstrate that this HER2/neu-derived peptide is a shared TAA among several adenocarcinomas including pancreatic carcinoma, suggesting a common mechanism of recognition of these human tumors by T lymphocytes. The identification of the HER2/neu-derived peptide GP2 as a TAA in pancreatic cancer provides an opportunity for the design of novel immunotherapy and vaccine strategies.  相似文献   

2.
The identification of tumor-associated Ags recognized by CD8+ CTL and prevention of tumor outgrowth by adoptive transfer of these CTL demonstrates that CD8+ T cells play a major role in antitumor immunity. We have generated B16.F10 melanoma cells that express the glycoprotein epitope amino acid 33-41 (GP33) of the lymphocytic choriomeningitis virus (LCMV) to examine antitumor CD8+ T cell response in C57BL/6 mice immune to LCMV and in mice transgenic for the LCMV GP33-specific P14 TCR (P14 TCR mice). We find that B16.F10GP33 tumor cells grew in syngeneic C57BL/6 mice without inducing T cell tolerance. LCMV infection or adoptive transfer of LCMV-specific effector T cells delayed but did not prevent growth of preestablished tumors in these mice. However, B16.F10GP33 tumor cells were rejected in mice immune to LCMV and in mice treated with LCMV-specific effector T cells on the same day as the tumor. Surprisingly, B16.F10GP33 tumor cells grew in P14 TCR transgenic mice despite an abundance of tumor-associated Ag-specific CD8+ T cells. In these mice, freshly isolated tumor-infiltrating lymphocytes exhibited an activated phenotype and displayed high GP33-specific cytolytic activity when assessed ex vivo. Thus, B16.F10GP33 melanoma cells are able to initiate, but not to sustain, a GP33-specific CTL response sufficient to clear the tumor enduringly.  相似文献   

3.
By conjugation of proteins to beads, Ags can be selectively targeted into the MHC class I pathway of phagocytes in vivo and can stimulate CTL responses. Because phagocytes also present particulate Ag on MHC class II molecules, we examined whether these Ags stimulated concomitant CD4 T cell immunity. Although the priming of CD4 T cells with soluble OVA required adjuvants, particulate Ag was stimulatory when injected in saline. We next examined whether CD4 T cell responses played a role in the generation of CTL to particulate Ag. At low concentrations of Ag, OVA primed CTLs in wild-type mice but not in MHC class II-deficient animals, indicating that MHC class II presentation of Ag was essential for CTL generation. These data both support a model where CD4 T cells collaborate with CTLs as part of a three-cell interaction and identify a phagocyte as the third cell in this reaction. Interestingly, injection of higher concentrations of the same Ag primed equivalent CTL responses in both wild-type and MHC class II-deficient mice. These results indicate that a key variable in determining whether CTL generation is helper cell dependent or independent is the dose of immunogen. This may explain in part why CTL responses to abundant Ags, such as viruses, tend to be helper independent, while responses to less abundant Ags, such as minor histocompatibility Ags, require T helper cells. In addition, these results also point to the potential of using particulate Ags to prime or boost responses in settings with CD4 immunodeficiency.  相似文献   

4.
This study compared ligand densities on antigen-presenting cells (APCs) needed for in vitro restimulation of in vivo primed T cells and for in vitro assessed T cell effector function. Spleen cells of lymphocytic choriomeningitis virus (LCMV)-primed mice were restimulated in vitro with graded amounts of virus-derived peptides using macrophages or a cloned dendritic cell line as APCs. To test for effector function of these cytotoxic T cells, the same APCs pulsed with graded amounts of the peptides were used as target cells in an in vitro 51Cr release assay. The same peptide concentration that rendered an APC restimulatory for primed cytotoxic T lymphocytes (CTLs) also rendered it susceptible for lysis by the same CTLs. In addition, the same peptide concentrations that made macrophages susceptible for CTL-mediated lysis induced proliferative responses in vitro of in vivo primed memory CTLs. Thus, restimulation of in vivo primed T cells--measured by either proliferation or cytotoxic effector function--or sensibilization of target cells for lysis requires similar ligand densities on APCs and is therefore, contrary to expectations, governed by similar overall avidity thresholds. These results have implications for CTL memory.  相似文献   

5.
Melan-A/MART-1 is a melanoma differentiation antigen that is recognized by a high proportion of cytolytic T lymphocyte (CTL) clones derived from human leukocyte antigen (HLA)-A2+ melanoma patients. Whereas peptide Melan-A/ MART-1(27-35) was originally defined as the immunodominant CTL epitope, we have previously reported that peptide Melan-A/MART-1(26-35) was recognized more efficiently by the majority of tumor-reactive CTL clones. As demonstrated here, CTL populations generated from blood lymphocytes of either melanoma patients or healthy individuals after in vitro stimulation with peptide Melan-A/MART-1(26-35) killed specifically HLA-A2+ Melan-A+ allogeneic melanoma cells, thus suggesting their potential use in adoptive immunotherapy. We characterized the surface phenotype of the circulating CTL precursors (CTLp), which respond to in vitro stimulation with peptide Melan-A/MART-1(26-35). In melanoma patients, these CTLp predominantly expressed the CD45RO memory marker. In contrast, they were mainly, although not exclusively, found in the CD45RA subpopulation of CD8 T cells in healthy individuals. The demonstration that Melan-A/MART-1-specific CTLp in peripheral blood lymphocytes from HLA-A2+ patients with metastatic melanoma express a memory phenotype provides direct evidence that in vivo priming of this antigen may occur during tumor progression.  相似文献   

6.
Immunogenic peptides of human tumor Ag have been used to generate antigen-specific CTL. However, the vast majority of these peptide-specific CTL clones are of low avidity and are peptide, but not tumor, reactive. Peptide-MHC tetramers have been shown to bind specific TCRs with sufficient affinity to be useful reagents for flow cytometry. In this paper we demonstrate that peptide-MHC tetramers can also be used to selectively identify high avidity tumor-reactive CTL and enrich, from a heterogeneous population, the subpopulation of peptide-reactive T cells that can lyse tumor targets. The melanoma proteins, MART-1 and gp100, were used to induce potentially tumor-reactive T cells, and the intensity of T cell staining by TCR binding of specific peptide-MHC tetramers was assessed. A range of fluorescence intensity was detected, and the magnitude of tetramer binding was correlated with T cell avidity. The population of peptide-reactive T cells was phenotypically similar with regard to expression of TCR and adhesion molecules, suggesting that this differential avidity for tumor cells reflected differential affinity of the TCR for its peptide-MHC ligand. Sorting, cloning, and expansion of tetramerhigh CTL from a heterogeneous population of peptide-stimulated PBMCs enabled rapid selection of high avidity tumor-reactive CTL clones, which retained their functional and tetramerhigh phenotype on re-expansion. These results demonstrate that the avidity of a T cell for its tumor target is due to the specific affinity of the TCR for its peptide-MHC ligand, that this interaction can be described using peptide-MHC tetramers and used to isolate high avidity tumor-reactive CTL.  相似文献   

7.
A number of ultraviolet light-induced tumors that do not grow progressively in 3- or 9-month-old animals grow progressively in animals starting at approximately 15 months of age. We investigated the immune response to one such tumor, 6130, in young and old mice to determine in nature of this breakdown in immune protection with age. The 6130 tumor cells that grow progressively in 22-month-old animals still retain sensitivity of cytotoxic T lymphocytes (CTLs) generated against the highly immunogenic "6130-A" antigen and consequently are still immunologically rejected when transplanted into 3- and 9-month-old animals, but not in mice older than 15 months. Investigation of the CD8+ CTL response found that in animals 3-12 months old, primary and secondary tumor-specific CTL responses to 6130 can be generated in vivo and in vitro. On the other hand, the CD8+ CTL responses to 6130 seen in animals 15 months of age or older were significantly depressed or absent. These results indicate that a decline in antigen-specific CD8+ CTL is the major cause of increased susceptibility to 6130 tumor growth in older animals.  相似文献   

8.
Bystander activation, i.e., activation of T cells specific for an antigen X during an immune response against antigen Y may occur during viral infections. However, the low frequency of bystander-activated T cells has rendered it difficult to define the mechanisms and possible in vivo relevance of this nonspecific activation. This study uses transgenic mice expressing a major histocompatibility complex class I-restricted TCR specific for glycoprotein peptide 33-41 of lymphocytic choriomeningitis virus (LCMV) to overcome this limitation. CD8+ T cells from specific pathogen-free maintained, unimmunized "naive" TCR transgenic mice can differentiate into LCMV-specific cytolytic effector CTL during infections with vaccinia virus or Listeria monocytogenes in vivo or mixed lymphocyte culture in vitro. We show that in these model situations (a) nonspecifically activated CTL are able to confer antiviral protection in vivo, (b) bystander activation is largely independent of the expression of a second T cell receptor of different specificity, (c) bystander activation is not mediated by a broadly cross-reactive TCR, but rather by cytokines, (d) bystander activation can be mediated by cytokines such as IL-2, but not alpha/beta-IFN in vitro; (e) bystander activation is, overall, a rare event, occuring in vivo in roughly 1 in 200 of the LCMV-specific CTL during infection of TCR transgenic mice with vaccinia virus; (f) bystander activation does not have a significant functional impact on nontransgenic CTL memory under the conditions tested; and (g) even in the TCR transgenic situation, where unphysiologically high numbers of T cells of a single specificity are present, bystander activation is not sufficient to cause clinically manifest autoimmune disease in a transgenic mouse model of diabetes. We conclude that although bystander activation via cytokines may generate cytolytically active CTL from naive precursors, quantitative considerations suggest that this is usually not of major biological consequence.  相似文献   

9.
We demonstrate that human T lymphocytes proliferate in vitro to highly purified human heat-shock protein 60 (Hu.hsp60). The response to this self Ag was confined to the CD45RA+ RO- T cell subset, with minimal responses by adult CD45RA- RO+ T cells. Experiments using keyhole limpet hemocyanin as a prototypic novel Ag, or tetanus toxoid as a recall Ag, were consistent with the notion that CD45RA+ RO- and CD45RA- RO+ T cell subsets can be designated as naive and memory cells, respectively; thus, responses to Hu.hsp60 were confined to the putative naive subset. In contrast, both CD45RA+ RO- and CD45RA- RO+ T cell populations proliferated to bacterial hsp60 from Mycobacterium leprae, Escherichia coli, or Chlamydia trachomatis. However, only CD45RA- RO+ (memory) T cells responded to a mycobacterial hsp60-derived peptide previously defined as a major bacteria-specific epitope. Experiments with cord blood T cells, which are CD45RA+ RO- and can be considered truly naive, showed that the peptide could elicit responses from naive T cells in vitro; cord blood cells also responded to Hu.hsp60. Since bacterial hsp60 Ags contain both conserved and nonconserved epitopes, we speculate that in vivo challenge with bacterial hsp60 will activate T cells capable of seeing either type of epitope, but only those that see nonconserved epitopes maintain the CD45RA- RO+ memory phenotype. However, T cells recognizing conserved epitopes, while not apparently being recruited to the memory pool, may nevertheless play a role in immunoregulation, particularly in the context of inflammation, when expression of Hu.hsp60 is increased.  相似文献   

10.
We have investigated mechanisms involved in immunodominance of the CTL response of C57BL/6 (B6) mice against cells of BALB.B origin. This transplantation barrier consists of at least 40 minor histocompatibility (H) Ags. Insufficient presentation of nondominant epitopes in the presence of dominant epitopes was investigated as a possible mechanism for immunodominance. Ag presentation was assessed by recognition of dendritic cells of BALB.B origin, MLC restimulatory capacity, and quantification of cell surface presentation by peptide elution from intact cells. Cells from BALB.B mice, which fail to elicit CTL against nondominant epitopes, presented nondominant epitopes to a similar extent as cells from minor H congenic mice; the latter do elicit CTL against nondominant minor H Ags. Nevertheless, presentation of nondominant and dominant epitopes by the same APC appeared to be an important factor for immunodominance to occur, since simultaneous immunization with the epitopes on separate cells elicited CTL against both types of epitopes. This suggested that immunodominance is determined in the interaction between different responding T cells and the APC. Support for this was obtained in an in vitro model in which the CTL response against a nondominant epitope was inhibited by the concomitant response against a dominant epitope. This study suggests that immunodominance in the CTL response against certain minor H Ags results from interference between T cell responses and not from insufficient presentation of peptide epitopes. The study also provides an in vitro model for further investigations of the immunodominance phenomenon.  相似文献   

11.
We previously reported that complexes of peptide with soluble single-chain recombinant MHC (SC-MHC) class I molecules are able to induce cytotoxic T lymphocytes (CTL) in vitro in a murine system with an efficiency comparable to that observed with peptide-pulsed dendritic cells as antigen-presenting cells. In this report, we have assessed the capacity of preformed peptide/SC-Kd complexes in monomeric or dimeric form as well as of peptide/SC-Kd-loaded beads to generate in vitro specific CTL responses from naive DBA/2 spleen cells. Peptide/SC-Kd-coated beads were consistently more efficient. We evaluated the role of costimulatory molecules, using monoclonal antibodies anti-CD80 or anti-CD86. In addition, the capacity of peptide/SC-Kd-coated beads to generate a CTL response from purified naive CD8+ T cells was ascertained. Taken together, the results indicate that, under our conditions, CTL priming does not require the participation of co-stimulatory molecules and is the consequence of a direct interaction between the cognate TCR on peptide-specific CTL precursors and the peptide/SC-Kd-loaded beads. Titration of the amount of preformed complexes of SC-Kd and peptide 170-179 of HLA-CW3 that need to be coated onto the beads to prime CTL precursors shows an activation threshold which can be calculated to be between 25000 and 50000 complexes. In effect, in cultures stimulated with specific peptide CW3/SC-Kd complexes representing less than 50% occupancy of the total (10(5)) complexes on the beads, no peptide-specific cytolytic activity was observed. These results suggest that the efficiency of the primary CTL induction depends on the density of specific peptide/SC-Kd complexes present on the beads.  相似文献   

12.
A T cell line recognizing autologous and allogeneic HLA-A3.1 melanomas was obtained from a disease-free melanoma patient (patient 15392). By transfection of a tumor cDNA library and in vitro sensitization experiments, the ALLAVGATK gp100/Mel17-derived peptide was found to be the epitope recognized by this melanoma-specific T cell line. The role of the ALLAVGATK peptide in the systemic immune response to melanoma of this patient was evaluated. When pulsed on the autologous peripheral blood mononuclear cells, the ALLAVGATK peptide generated tumor-specific HLA-A3-restricted T lymphocytes and a single restimulation in vitro was sufficient to raise gp100-specific T lymphocytes, indicating a high frequency of epitope-specific T cells. gp100-specific T cells were also induced from T lymphocytes purified from tumor-invaded lymph nodes (tumor-associated lymphocytes, TAL). TAL-derived effectors displayed lower peptide affinity and lower tumor recognition than effectors elicited from peripheral blood lymphocytes (PBL). To further evaluate its immunogenicity, ALLAVGATK was used to stimulate PBL derived from six additional HLA-A3.1 melanoma patients and seven healthy donors. After 7 weeks of peptide stimulation in vitro the generation of anti-gp100 and tumor-specific T cell lines was achieved in one out of the six patients analyzed. Taken together these data indicate that an in vivo priming leading to a systemic immunity against gp100 in HLA-A3 melanoma patients may occasionally occur and that the immunogenicity of ALLAVGATK peptide in melanoma patients is comparable to that of other HLA-A2-restricted epitopes derived from gp100/Mel 17 protein.  相似文献   

13.
We have studied the kinetics of the antigen induced response of naive and memory CD8 T cells expressing a transgenic T cell receptor (TCR) specific for the glycoprotein peptide amino acid 33-41 (GP33) of the lymphocytic choriomeningitis virus (LCMV). Memory T cells were generated in vivo by adoptive transfer of LCMV TCR transgenic T cells into normal recipient mice, followed by LCMV infection. The results demonstrated that the cell cycle progression and kinetics of TCR down-modulation, CD25 and CD69 up-regulation were identical in naive and memory T cells after antigen recognition. Moreover, the two T cell populations did not differ in respect of activation thresholds and in their proliferative capacities neither in vitro nor in vivo. However, memory CD8 T cells could be more rapidly induced to become cytolytic and to secrete high levels of interleukin-2 and interferon-gamma than naive T cells. LCMV GP33-specific CD8 memory T cells were only slightly more efficient in reducing LCMV titers in the spleen but were far more effective than naive LCMV GP33-specific T cells in controlling subcutaneous tumor growth of B16.F10 melanoma cells which expressed the LCMV GP33 epitope as tumor-associated antigen. Thus, in our experiments the main difference between CD8 memory T cells and naive cells is the ability of the former to rapidly acquire effector cell functions.  相似文献   

14.
Cytotoxic T lymphocytes (CTL) capable of recognizing prototype hepatitis C virus (HCV) sequences have been shown to localize to the liver in chronically infected individuals, where they are thought to influence hepatic inflammation and viral replication. We isolated three intrahepatic CD8(+) CTL clones from two individuals with chronic HCV infection and compared the recognition of prototype and autologous HCV sequences. These CTL recognized epitopes within the NS2 (amino acids 957-964) or NS3 (amino acids 1402-1410 and 1406-1415) proteins in the context of HLA B37, B8, or A2.1, respectively. The corresponding predominant autologous HCV sequences (SDWAANGL, ELAAKLVGL, and ALRGMGVNAV, respectively) differed from the HCV-1 sequences used for screening (RDWAHNGL, ELAAKLVAL, and KLVALGINAV, respectively) at one to five residues. For each CTL clone, recognition of the autologous HCV sequence required significantly higher peptide concentrations than did recognition of the HCV-1 sequence; for two of the clones, recognition was minimal or absent at peptide concentrations as high as 25 microM. These data show that intrahepatic HCV-specific CD8(+) CTL clones can be relatively inefficient at recognizing autologous viral epitopes. Inefficient recognition of autologous HCV sequences should influence the interpretation of data generated using prototype HCV sequences and might have implications in vivo.  相似文献   

15.
An important element in melanoma vaccine construction is to identify peptides from melanoma-associated Ags that have immunogenic potential in humans and are recognized by CD8+ T cells in vivo. To identify such peptides, we evaluated HLA-A*02+ melanoma patients immunized to a polyvalent vaccine containing multiple Ags, including MAGE-3, Melan-A/MART-1, gp100, tyrosinase, melanocortin receptor (MC1R), and dopachrome tautomerase (TRP-2). Using a filter spot assay, we measured peripheral blood CD8+ T cell responses, before and after immunization, to a panel of 45 HLA-A*0201-restricted peptides derived from these Ags. The peptides were selected for immunogenic potential based on their strong binding affinity in vitro to HLA-A*0201. Vaccine treatment induced peptide-specific CD8+ T cell responses to 22 (47.8%) of the peptides. The most striking finding was the HLA-independent heterogeneity of responses to both peptides and Ags. All responding patients reacted to different combination of peptides and Ags even though the responding patients were all A*0201+ and the peptides were all A*0201-restricted. From 9 to 27% of patients developed a CD8+ T cell response to at least one peptide from each Ag, but no more than 3 (14%) reacted to the same peptide from the same Ag. This heterogeneity of responses to individual peptides and Ags in patients with the same haplotype points to the need to construct vaccines of multiple peptides or Ags to maximize the proportion of responding patients.  相似文献   

16.
The TCR repertoire of CD8+ T cells specific for Moloney murine leukemia virus (M-MuLV)-associated Ags has been investigated in vitro and in vivo. Analysis of a large panel of established CD8+ CTL clones specific for M-MuLV indicated an overwhelming bias for V beta4 in BALB/c mice and for V beta5.2 in C57BL/6 mice. These V beta biases were already detectable in mixed lymphocyte:tumor cell cultures established from virus-immune spleen cells. Furthermore, direct ex vivo analysis of PBL from BALB/c or C57BL/6 mice immunized with syngeneic M-MuLV-infected tumor cells revealed a dramatic increase in CD8+ cells expressing V beta4 or V beta5.2, respectively. M-MuLV-specific CD8+ cells with an activated (CD62L-) phenotype persisted in blood of immunized mice for at least 2 mo, and exhibited decreased TCR and CD8 levels compared with their naive counterparts. In C57BL/6 mice, most M-MuLV-specific CD8+ CTL clones and immune PBL coexpressed V alpha3.2 in association with V beta5.2. Moreover, these V beta5.2+ V alpha3.2+ cells were shown to recognize the recently described H-2Db-restricted epitope (CCLCLTVFL) encoded in the leader sequence of the M-MuLV gag polyprotein. Collectively, our data demonstrate a highly restricted TCR repertoire in the CD8+ T cell response to M-MuLV-associated Ags in vivo, and suggest the potential utility of flow-microfluorometric analysis of V beta and V alpha expression in the diagnosis and monitoring of viral infections.  相似文献   

17.
We recently identified a murine mutant Ras p21 CD8+ CTL epitope reflecting residues 4 to 12, containing the mutation of Gly to Val at codon 12, that bound weakly to H-2Kd in vitro and generated a weak primary CTL response in immunized BALB/c mice. Here, we explored the hypothesis that specific modifications to the Ras4-12 peptide sequence can improve MHC binding, leading to enhanced immunogenicity without altering immune specificity. We synthesized Ras4-12 peptides in which Val at residue 12 was replaced with the more dominant H-2Kd C-terminus anchor residue Leu or Ile. In functional H-2Kd binding assays, Ras4-12(L12 or I12) peptide variants competed more effectively than the Ras4-12(V12) peptide. Ras4-12(L12 or I12) peptide variants enhanced both in vitro cytotoxicity and proliferation responses of anti-Ras4-12 CTL compared with the mutant Ras4-12(V12) peptide. Additionally, the Ras4-12(L12) peptide variant induced a quantitatively greater T cell response in vivo compared with that produced by Ras4-12(V12) as determined by IFN-gamma production. Mice immunized with Ras4-12(L12) peptide elicited CD8+ CTL activity specific for target cells presenting the Ras4-12(V12) epitope exogenously and endogenously. Moreover, both anti-Ras4-12(V12)-derived and anti-Ras4-12(L12)-derived CTL lines were similar insofar as their TCR usage and amino acid contact residues in the Ras4-12(V12) peptide. These experiments demonstrate that modifications can be introduced in tumor-specific peptide epitopes to enhance both in vitro and in vivo immunogenicity. The design of oncogene-specific peptide epitope variants as immunogens may accelerate the generation of anti-tumor T cell responses for cancer immunotherapy.  相似文献   

18.
Since the natural immune response to hepatitis C virus (HCV) is often unable to clear the infection, to enhance immunogenicity we studied substituted peptides from an HCV cytotoxic T lymphocyte (CTL) epitope (C7A2) from a conserved region of the HCV core protein (DLMGYIPLV) recognized by CTL lines from HLA-A2.1(+) HCV-infected patients and HLA-A2.1 transgenic mice. HLA-A2.1 binding, human and murine CTL recognition, and in vivo immunogenicity (using mice transgenic for human HLA-A2 in lieu of immunizing humans) were analyzed to define peptides with enhanced immunogenicity. Peptides substituted at position 1 showed enhanced HLA-A2 binding affinity, but paradoxically poorer immunogenicity. A peptide with Ala substituted at position 8 (8A) showed higher HLA-A2 binding affinity and CTL recognition and was a more potent in vivo immunogen in HLA-A2-transgenic mice, inducing higher CTL responses with higher avidity against native C7A2 than induced by C7A2 itself. These results suggest that peptide 8A is a more potent in vitro antigen and in vivo immunogen than C7A2 and may be useful as a vaccine component. They provide proof of principle that the strategy of epitope enhancement can enhance immunogenicity of a CTL epitope recognized by human CTL.  相似文献   

19.
CD8+ cytotoxic T lymphocytes (CTL) have an established role in anti-viral immunity, but whether CTL function efficiently in the brain remains unclear. In particular, virus-infected neurons, which express only low levels of MHC class I antigens and are resistant to the induction of apoptosis, could constitute a relatively intractable CTL target. We have used immune lymphocytes adoptively transferred into the CSF to protect naive mice against an intracerebral infection with influenza A/WSN, a virus that infects neurons in the brain parenchyma and causes a lethal encephalitis. After in vitro restimulation, heterotypically immune spleen cells protected against A/WSN encephalitis in an H-2-restricted, CD8-dependent, CD4-independent manner. Adoptively transferred CTL clones were also protective. Homotypically immune spleen cells additionally mediated CD8-independent, H-2-unrestricted protection, probably due to the generation of A/WSN-specific plasma cells from memory B cells during in vitro restimulation. Thus after in vitro restimulation, either CTL or B cells adoptively transferred into the CSF protected against an acutely lethal intracerebral virus infection.  相似文献   

20.
The identification of T cell epitopes presented by alternative HLA-B and -C alleles may provide a means to counteract the tumor escape mechanism based on the selection of tumor cells no longer susceptible to HLA-A-restricted T cell recognition. Several T cell clones and lines were obtained from T lymphocytes purified from melanoma-infiltrated or noninfiltrated lymph nodes of a patient who remained disease free 8 yr after surgery. Selected T cells recognized the autologous melanoma as evaluated by direct cytolysis and production of cytokines. These effectors were directed against the tyrosinase-related protein-2 (TRP-2) and gp100 melanoma epitopes restricted by HLA-Cw8. The nonamer and decamer peptides containing the sequence ANDPIFVVL (residues 387-395) of TRP-2 and the octamer, nonamer, and decamer peptides containing the sequence SNDGPTLI (residues 71-78) of gp100 reconstituted the epitope for TRP-2- and gp100-specific T cell lines and clones, respectively. However, only the nonameric form of TRP-2 and the nonameric and octameric forms of gp100 were able to induce peptide-specific T cells recognizing the autologous tumor in an HLA-class I-restricted fashion from PBMC of the melanoma patient studied. Together these data indicate that HLA-Cw8 can restrict the recognition of gp100 and TRP-2 epitopes by CTL, and that such peptides could stimulate a patient's PBL, suggesting that these Ags could have contributed to a systemic immunity against melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号