首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A near-equimolar CrMoNbZr coating with low thermal neutron cross sections is prepared on zircaloy-4 substrate by radio frequency magnetron sputtering. The microstructure, mechanical properties, and surface wettability of the coatings prepared at different deposition temperatures are studied. The high-temperature corrosion resistance of the CrMoNbZr coatings is investigated by a 40 d autoclave corrosion test with pure water containing 3.5 ppm lithium, 1000 ppm boron at 320 °C. The results indicate that the CrMoNbZr coatings are mainly composed of body-centered cube-structured nanocrystals, and the coating deposited at 300 °C has superior high-temperature corrosion resistance and mechanical properties. Finally, the mechanism of high-temperature corrosion is elucidated.  相似文献   

2.
Thermal barrier coatings are widely used in aircraft turbines to protect nickel‐based superalloys from the effect of high temperature oxidation and hot corrosion. In this study, both NiCrAlY bond coat and yttria‐stabilized zirconia top coat were deposited using atmospheric plasma spray technique. After coating production, specimens were exposed to oxidation in air atmosphere at 900 °C, 1000 °C and 1100 °C for different periods of time up to 50 h. Microstructural transformations in the ceramic top coat and growth behavior of the thermally grown oxide layer were examined using scanning electron microscopy, porosity calculation, elemental mapping and hardness measurement. Formation of different types of oxides in the thermally grown oxide layer shows that this process strongly depends on deposition technique as well as on oxidation time and temperature. Hardness values of the top coat increased with a decrease in the porosity of the top coat. Uniformity and homogeneity of the thermally grown oxide layer and densification of the top coat were evaluated in terms of the structural durability of thermal barrier coating systems.  相似文献   

3.
Diamond impregnated metal matrix composites are the state of the art solution for the machining of mineral materials. The type of interface reactions between the metal matrix and diamond surface has an essential influence on the tool performance and durability. To improve the diamond retention, the diamonds can be coated by physical vapour deposition with metallic materials, which enforce interface reactions. Hence, this paper focuses on the investigation of the interfacial area on metal‐coated monocrystalline diamonds. Hafnium and zirconium, both known as carbide forming elements, are used as coating materials. The third coating, which is used to determine its catalytic influences when applied as a physical vapour deposition (PVD)‐layer, is nickel. Additionally, the coated diamond samples were heat‐treated to investigate the starting point of the formation of new phases. X‐ray diffraction‐analyses revealed the assumed carbide formation on hafnium and zirconium coated samples. The formation temperature was identified between 800 °C and 1000 °C for hafnium and zirconium coatings.  相似文献   

4.
Increase of energy efficiency by increasing the turbine inlet temperature is the main driving force for further investigations regarding new thermal barrier coating materials. Today, thermal barrier coatings consisting of yttria stabilized zirconia are state of the art. In this study, thermal barrier coatings consisting of 7 weight percent yttria stabilized zirconia (7YSZ) and pyrochlore lanthanum zirconate (La2Zr2O7) were deposited by electron beam physical vapor deposition. Regarding thermal cycling and isothermal oxidation behavior different layer architectures such as mono‐, double‐ and quadruple ceramic layers were investigated. The thermal shock behavior was examined by thermocycle tests at temperatures in the range between T = 50 °C ‐1,150 °C. Additionally, the isothermal oxidation behavior at a temperature of T = 1,150 °C with dwell times of t= 50 h and t = 100 h was studied in the present work. The conducted research concerning the behavior of various thermal barrier coating systems under thermal cycle and isothermal load highlights the potential of multilayer thermal barrier coatings for operating in high temperature areas.  相似文献   

5.
为了提高ZK61S镁合金的耐腐蚀性能,采用微弧氧化方法以不同电压(300,380,450 V)在ZK61S镁合金表面制备氧化膜并进行封孔处理。利用金相显微镜、扫描电镜、X射线衍射仪分析膜层的形貌、结构和组成;通过腐蚀电位试验、中性盐雾腐蚀试验及抗剥落腐蚀试验进行耐腐蚀性能考核。结果表明:微弧氧化呈现疏松多孔形态且均匀覆盖于基材表面,主要由Mg、MgO和Al_2Si_2O_5(OH)4相组成;微弧氧化处理后试样的腐蚀电位显著提升,且380 V所得微弧氧化试板的腐蚀电位达到-881.53 m V,经过408 h的中性盐雾腐蚀试验后的腐蚀速率为0.012g/(m~2·h),耐蚀性能比未进行表面处理的基材提高了88倍;经封孔处理的微弧氧化试板经过456 h的中性盐雾腐蚀试验后腐蚀速率降低到0.003 g/(m~2·h);封孔处理使微弧氧化膜的抗剥落腐蚀性能由微弧氧化后的EB级提升到EA级。  相似文献   

6.
In this study, structural and oxidation behavior of WC–Co coatings was analyzed during atmospheric heat treatment process between 150 °C and 1100 °C. Two types of WC–12%Co coatings with different particle size and morphology were deposited on steel substrates using Air Plasma Spraying. The coated samples were heat treated in atmosphere in different temperatures between 500 and 1100 °C. Microstructural evaluation, X-ray diffraction analysis and microhardness testing were performed before and after heat treatment. In this case, the results showed that, regarding increase hardness of coating samples based on increasing applied temperature, coatings kept their properties up to 500 °C. In addition, by increasing heat treatment temperature up to 1100 °C, oxidation process in coated layer accelerated and caused coating detachment from the coating-substrate interface.  相似文献   

7.
张锋刚 《材料保护》2019,52(4):78-84
为了进一步提高镁合金表面Ni-Mo-P镀层的耐蚀性,采用0M、XRD和浸泡试验等方法,研究了退火处理对AZ31镁合金表面Ni-Mo-P镀层组织与腐蚀性能的影响。结果表明:AZ31镁合金阳极氧化-化学镀Ni-Mo-P镀层表面为“胞状”组织,随着退火温度的升高或退火时间的延长,AZ31镁合金阳极氧化-化学镀Ni-Mo-P镀层的胞状组织逐渐细化,但镀层厚度降低,同时,非晶态Ni-Mo-P镀层组织逐渐向晶态转变,350℃退火1.0h具有较高的非晶化程度,退火处理后的Ni-Mo-P镀层由Mg、MgO、Mg2SiO4、Ni和Ni3P组成;退火使AZ31镁合金阳极氧化-化学镀Ni-Mo-P镀层耐蚀性降低,350℃退火1.0 h镀层具有相对较好的耐蚀性,这与镀层的厚度和非晶化程度有关。  相似文献   

8.
Rare earths (RE) have been used to increase high temperature oxidation resistance of chromia and alumina forming alloys. The RE can be added as elements (or oxides) to the alloys or applied as oxide coatings to the alloy surface. This paper presents the effect of different RE oxide coatings and lanthanum chromite coatings on the high temperature oxidation behavior of Fe20Cr and Fe20Cr4Al alloys. The oxidation resistance of the Fe20Cr alloy increased with increase in ionic radius of the RE element in the coating. The RE oxides decreased chromia growth rate more than alumina growth rate. In extended cyclic oxidation tests that were carried out from peak temperatures of 900 °C, 1,000 °C and 1,100 °C to room temperature at cooling rates of 300 °C/s and 1,000 °C/s, the La2O3 coating increased cyclic oxidation resistance of the Fe20Cr alloy significantly more than the Pr2O3 coating. The role of RE in increasing overall oxidation resistance of chromia forming alloys is discussed.  相似文献   

9.
The industrial application of APS sprayed YPSZ coatings for thermal insulation is established in several branches. As the main potential to increase the efficiency of combustion processes is thermal efficiency and the state‐of‐the‐art systems are limited to surface temperatures below 1200°C for long term applications, there is interest in concepts, that allow an increase of the process temperature. Ceria and ceria based ceramics show an outstanding potential for use at temperatures exceeding 1200°C. A triple‐layer thermal barrier system in consideration of the established system – MCrAlY bond coat and YPSZ – and an additional ceria based top coating are investigated. TBC systems with two different ceria powders are produced by APS and HVOF spraying and evaluated with concern to the microstructure, bond strength, thermal shock behaviour and long term compatibility of the constituents. HVOF sprayed coatings contain more oxygen, are more dense than APS sprayed coatings and do not show segmentation due to cracks perpendicular to the surface. APS sprayed pure ceria coatings show a columnar morphology inside single splats forming the coating. The bond between YPSZ and ceria and the total bond strength of the thermal barrier system exceeds the cohesion inside the ceria coating. The thermal shock resistance of ceria coatings with high silica and sulphur content is low. Long term sintering investigations prove the compatibility of ceria and YPSZ at 1150°C.  相似文献   

10.
Pure aluminium coatings were prepared on magnesium-zinc-yttrium-calcium alloy substrate via cold spraying technology with different scanning speeds and working gas temperature. The correlation between the corrosion resistance of the coatings and the different spraying process was studied. While the working gas temperature is 600 °C and the scanning speed is 1 mm/s, aluminium coating has less porosity and the coating was well combined with the substrate. Higher temperature of working gas increases the plastic deformation of particles, which lead to a dense aluminium coating. The relationship of corrosion resistance on working gas temperature and scanning speed of aluminium coatings has also been investigated by immersion corrosion test and electrochemical impedance spectroscopic techniques. The results show that the cold sprayed aluminium coatings revealed a lower porosity and higher corrosion resistance with the decreasing scanning speed and the increasing temperature of working gas. The porosity and corrosion current densities were 0.938 vol.% and 2.427 ⋅ 10−6 A/cm2. The experimental results show that the aluminium coating prepared by cold spraying has a good protective effect on magnesium alloy.  相似文献   

11.
Abstract

The thermal stability of three stainless steel conversion coatings for high temperature applications (e.g. photothermal conversion catalysis) are investigated. The thermal oxidation in air up to 1000°C of Fe–17Cr, Fe–18Cr–1·3Al, and Fe–22Cr–5Al coatings (all wt-%) are compared. This study has revealed a critical temperature below which the coating thickness is preserved; the critical temperature increases and the thermal oxidation of the conversion coating decreases with higher chromium and aluminium content. This is attributed to the difference in the substitution ratio of γ lacunar phase (additionally oxidised substituted magnetite), which is the main component of the conversion coatings. The thermal stability of this phase is higher when it is richer in chromium or aluminium. Higher contents of these elements raise the temperature of formation of chromite (FeCr2O4) and alumina, the occurrence of which causes thickening of the coating during thermal treatment.

MST/1891  相似文献   

12.
利用冷喷涂技术制备CoNiCrAlY涂层,并对涂层进行了真空预氧化处理。结合X射线衍射,扫描电镜,能谱分析等方法研究预氧化处理前后的CoNiCrAlY涂层在900℃的Na2SO4熔盐中的热腐蚀行为。结果表明:冷喷涂CoNiCrAlY涂层含氧量为0.12%(质量分数),孔隙率小于0.28%(体积分数)。真空预氧化处理在涂层表面生成厚约0.26μm连续、致密的α-Al_2O_3氧化膜;喷涂态涂层和预氧化涂层在热腐蚀150h后表面均生成了以α-Al_2O_3为主的致密连续氧化膜,保护了基体免受腐蚀破坏;真空预氧化处理有效减缓了S和O等元素向涂层内扩散的速率,从而提高了涂层的抗Na2SO4熔盐热腐蚀性能;高温热腐蚀对涂层的破坏作用远大于高温氧化。在相同温度下,涂层在单一Na2SO4熔盐中腐蚀时,Al的消耗速率约为高温氧化时的2倍。  相似文献   

13.
(Cr1‐x,Alx)N a review about a multi‐purpose coating system Nitride based coatings claimed a big market share for PVD‐coatings. Especially in the field for high temperature die casting and cutting operations chromium based coatings are well used. These coatings are also used in low temperature processes for the coating of machine parts. In the beginning of the nineties first examinations are done on the ternary system Chromium‐Aluminium‐Nitride. This system shows an excellent corrosion behaviour against many different liquids, but gains also a high hardness for a good wear behaviour. By changing the AlN to CrN content and the coating design CrAlN opens up a wide range for different coating applications. A major step for machine parts was the reducing of coating process temperature beneath 200 °C. This was only possible by using pulsed power supplies. CrAlN shows a very good performance on the fast growing market of coated machine parts e.g. on spindle bearings.  相似文献   

14.
Oxidation resistance of the aluminide and silicide diffusion coatings pack-deposited on -TiAl were studied in air over the temperature range of 800 and 850°C for up to 4596 h. The oxidation kinetics of the coatings was monitored by intermittent weight gain measurement at room temperature. The XRD and SEM/EDS techniques were used to identify the oxide scales formed during the oxidation process and to assess the thermal stability of the coatings at the oxidising temperatures. It was revealed that the TiAl3 coating underwent preferential Al oxidation to form the Al2O3 scale in the early oxidation stage, which resulted in Al depletion and formation of TiAl2 in the subsurface of the coating. The Al depletion could not be sufficiently compensated by Al diffusion from the inner layer of the coating and eventually, in the late oxidation stage, led to the Ti oxidation and formation of the TiO2 phase in the scale. The preferential Si oxidation was the main oxidation mechanism for the coatings with an outer silicide layer and an inner TiAl3 layer with the formation of SiO2 as the stable oxide scale. The thermal stability of the coatings over the temperature range up to 850°C was discussed in relation to the high-temperature stability of diffusion couples of different coating layers.  相似文献   

15.
CrAlVYN-Ag coatings were successfully deposited by introducing the elements of V and Ag into CrAlYN hard coatings. Their microstructure and mechanical property as a function of the annealing temperature were investigated from room temperature (RT) (~25°C) to 800°C. Besides, the worn surfaces were analyzed after combined effects of temperature and friction to figure out the wear mechanisms at different temperatures. The coatings exhibited special surface morphologies and Ag diffusion after annealing at different temperatures. In addition, the x-ray diffraction results showed that the coatings suffered obvious oxidation once the temperature exceeded 600°C; as a result of this, the coating hardness decreased sharply. The friction coefficients were relatively high during the tribological tests from RT to 400°C because the abrasive wear mechanisms played a dominant role. The lower friction coefficients obtained at 600 and 700°C were mainly due to the self-lubricating mechanisms. However, the coating exhibited higher friction coefficient at 800°C, which was mainly ascribed to the severe oxidation wear of the coating.  相似文献   

16.
分别在磷酸盐和硅酸盐两种体系中研究了不同稀土元素对镁合金微弧氧化的影响.结果表明,提高钕盐浓度可以改善氧化膜的外观、厚度和耐蚀性能.镁合金浸泡在稀土盐溶液中表面能形成稀土转化膜.用稀土转化膜取代镁合金表面的自然氧化膜进行微孤氧化处理,获得的陶瓷层分布更加均匀,表面更为光滑致密.用5%NaCl溶液浸泡48 h的对比腐蚀试验表明,用稀土盐溶液浸泡预处理过的试样耐蚀性显著加强.  相似文献   

17.
Corrosion by biofuels ‐ Protection by coatings also under cyclic loadings The influence of corrosion on fatigue design must be considered in numerous component parts in the automotive industry. By using appropriate coatings the negative influence of corrosion under static and cyclic loading can be suppressed. Using the aluminum cast alloy AlSi7Mg0,3 T6 as an example, selected material‐coating‐systems were to be characterized under mechanical‐thermal‐corrosive complex loadings and characteristic properties for the fatigue design under cyclic loadings were to be determined. Conditioning tests were carried out with uncoated, anodized and chemical‐nickel‐plated specimen at different temperatures in the media fuel E5 (fuel with 5 % ethanol added) and E10 (fuel with 10 % ethanol added) and followed by SEM examined. The cyclic fatigue tests with chemically‐nickel‐plated and tempered aluminum in the fuel E5 at 100 °C no reduced influence on the fatigue strength, within the scattering, was discerned. This result agrees with the conditioning tests in the fuel E5 at 100 °C, where no corrosion was observed. Despite the coating of the specimens salt spray fog leads to a clear reduction in the fatigue strength. Using a damage accumulation calculation, it could be shown, that the real damage sum of the callipers and specimens, despite different types of coating, are comparable.  相似文献   

18.
The paper is concerned with systematic studies on the formation of overlay coatings on nickel and iron base superalloys to improve their resistance against high temperature oxidation and hot corrosion. In contrast to the simpler case of aluminizing nickel base alloys, the problems arising in aluminizing iron base superalloys and in siliconizing nickel base alloys have not yet been solved.A new and economical coating procedure is presented, which involves a reaction sintering process of unalloyed powder mixtures to obtain overlay coatings. The influence of the compositions of the layer and the substrate on the chemical compatibility of the whole layer composite is described in detail. It is shown that overlay coatings containing high concentrations of silicon can only be applied on nickel base superalloys if elements that are able spontaneously to form reaction barriers are present within the substrate alloy (e.g. aluminium) or in the as-preformed interlayer. Refractory metals have proved to be the most advantageous.To obtain a ductile coating, silicon-rich donor phases in the form of isolated precipitates were incorporated into a matrix containing low concentrations of silicon. These coating systems can also be applied to improve the aluminization of iron base alloys. The high temperature oxidation and corrosion behaviours of the coated samples were tested in burner gas or air at 1000°C and in molten salts at 900°C.  相似文献   

19.
In order to improve the oxidation resistance and decrease the infrared emissivity of carbon/carbon(C/C) composites, the SiC and SiC/ZrSiO4SiO2 (SZS) coating were prepared by pack cementation and slurry painting method. The phase compositions and microstructures of the as-prepared coatings were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectrometer. The anti-oxidation property, failure and infrared emissivity of single SiC coating and SZS coating were investigated. The results show that the weight loss of single SiC coated sample reached 2.1 ± 0.025 % after 58 h isothermal oxidation at 1,500 °C. While the SZS coating exhibits superior oxidation resistance and can protect C/C matrix from oxidation for more than 198 h with a weight-gain of 3.67 ± 0.025 %. The failure mechanisms of single SiC coating are mainly resulting from unself-healing defects caused by the CO2 gas which generated during the oxidation process of SiC. The investigation of infrared emissivity property reveals that, the infrared emissivity of SZS coating increases gradually from 0.45 to 0.72 between 3 and 14 μm. The infrared emissivity at 500 °C increases gradually from 0.2 to 0.65 between 3 and 14 μm. The coupled effect between dipole moments and lattice vibration in higher temperature becomes weaker, which in turn lead to the reducing of infrared emissivity in turn. From the anti-oxidation and infrared emissivity property point of view, the SZS coating may be one of the most promising candidates for the anti-oxidation at high temperature and low infrared emissivity of C/C composite.  相似文献   

20.
Ni–50Cr coatings were deposited using the HVOF technique on low alloy ferritic steel (2.25Cr–1Mo) substrates to improve their performance in high temperature steam environments. Different thermal spray parameters were studied in order to optimize the corrosion resistance of the coatings. High temperature thermal tests at 650 °C in different CO2 atmospheres (air with 0, 15 and 25 vol.% CO2) and thermal cycling tests in air at 550 °C and 650 °C were conducted to study the effectiveness of the coating protection system. The uncoated specimens were severely corroded but no oxidation in the coated substrates was detected. A reduction of 10 times in terms of weight change per area unit in the coated steel was obtained after 360 h of testing respect to that of the uncoated steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号