首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Owing to the limitations of system identification and modeling techniques, there is usually some unknown dynamics in the mathematical models of the complex systems. In addition, external perturbations can affect the chaotic systems' responses and may destroy the desired control purpose. Consideration of such uncertain dynamics and external fluctuations in control applications is important in research and practice. On the other hand, because of the limited operation of control actuators, most of the practical implementations of control systems are forced with some input constraints. Therefore, this paper investigates the control problem of uncertain autonomous and/or nonautonomous complex chaotic systems in the presence of input saturation. The upper bounds of the unknown dynamics, modeling uncertainties, external perturbations, and the parameters of the saturation function are assumed to be unknown in advance. To make a fast control response, an adaptive nonsingular terminal variable structure controller is proposed to assure the finite‐time stability of the equilibrium states. Rigorous stability analysis is performed to prove the correct performance of the designed control algorithm. Numerical simulations on the unified system and a chaotic elastic beam model are developed to demonstrate the usefulness of the introduced adaptive control strategy. It is worth to notice that the derived adaptive nonsmooth sliding mode approach is general and it can be easily adopted for controlling of a wide class of uncertain MIMO nonlinear systems.  相似文献   

2.
In this paper, a fractional‐order Dadras‐Momeni chaotic system in a class of three‐dimensional autonomous differential equations has been considered. Later, a design technique of adaptive sliding mode disturbance‐observer for synchronization of a fractional‐order Dadras‐Momeni chaotic system with time‐varying disturbances is presented. Applying the Lyapunov stability theory, the suggested control technique fulfils that the states of the fractional‐order master and slave chaotic systems are synchronized hastily. While the upper bounds of disturbances are unknown, an adaptive regulation scheme is advised to estimate them. The recommended disturbance‐observer realizes the convergence of the disturbance approximation error to the origin. Finally, simulation results are presented in one example to demonstrate the efficiency of the offered scheme on the fractional‐order Dadras‐Momeni chaotic system in the existence of external disturbances.  相似文献   

3.
This paper presents a composite learning fuzzy control to synchronize two different uncertain incommensurate fractional‐order time‐varying delayed chaotic systems with unknown external disturbances and mismatched parametric uncertainties via the Takagi‐Sugeno fuzzy method. An adaptive controller together with fractional‐order composite learning laws is designed based on both a parallel distributed compensation technology and a fractional Lyapunov criterion. The boundedness of all variables in the closed‐loop system and the Mittag‐Leffler stability of tracking error can be guaranteed. T‐S fuzzy systems are provided to tackle unknown nonlinear functions. The distinctive features of the proposed approach consist in the following: (1) a supervisory control law is designed to compensate the lumped disturbances; (2) both the prediction error and the tracking error are used to estimate the unknown fuzzy system parameters; (3) parameter convergence can be ensured by an interval excitation condition. Finally, the feasibility of the proposed control strategy is demonstrated throughout an illustrative example.  相似文献   

4.
In this paper, an adaptive integral sliding mode control (ISMC) scheme is developed for a class of uncertain multi‐input and multi‐output nonlinear systems with unknown external disturbance, system uncertainty, and dead‐zone. The research is motivated by the fact that the ISMC scheme against unknown external disturbance and system uncertainty is very important for multi‐input and multi‐output nonlinear systems. The system uncertainty, the unknown external disturbance, and the effect of dead‐zone are integrated as a compounded disturbance, which is well estimated using a sliding mode disturbance observer (SMDO). Then, the adaptive ISMC based on the designed SMDO is presented to guarantee the satisfactory tracking performance in the presence of system uncertainty, external disturbance, and dead‐zone. Finally, the designed adaptive ISMC strategy based on SMDO is applied to the attitude control of the near space vehicle, and simulation results are presented to illustrate the effectiveness of the proposed adaptive ISMC scheme using the SMDO. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In this article, the tracking control problem is investigated for a class of nonlinear systems in the presence of unknown disturbance, input saturation, actuator fault, and unknown control coefficient. A novel disturbance observer-based adaptive fault-tolerant tracking control strategy is proposed with regard to nonlinear systems. Based on the Gaussian error function, the auxiliary dynamic system is designed to offset effects caused by the input saturation. Moreover, the Nussbaum-type function is employed to avert control singularity and deal with the unknown control coefficient. A theoretical analysis indicates that the boundedness of all signals in the closed-loop system can be guaranteed. Finally, two examples with one concerning the dynamic point-the-bit rotary steerable drilling tool system are given to confirm the validity of the method.  相似文献   

6.
In this article, an adaptive fuzzy output feedback control method is presented for nonlinear time-delay systems with time-varying full state constraints and input saturation. To overcome the problem of time-varying constraints, the integral barrier Lyapunov functions (IBLFs) integrating with dynamic surface control (DSC) are applied for the first time to keep the state from violating constraints. The effects of unknown time delays can be removed by using designed Lyapunov-Krasovskii functions (LKFs). An auxiliary design system is introduced to solve the problem of input saturation. The unknown nonlinear functions are approximated by the fuzzy logic systems (FLS), and the unmeasured states are estimated by a designed fuzzy observer. The novel controller can guarantee that all signals remain semiglobally uniformly ultimately bounded and satisfactory tracking performance is achieved. Finally, two simulation examples illustrate the effectiveness of the presented control methods.  相似文献   

7.
This paper presents a novel parameter tuning law that forces the emergence of a sliding motion in the behavior of a multi‐input multi‐output nonlinear dynamic system. Adaptive linear elements are used as controllers. Standard approach to parameter adjustment employs integer order derivative or integration operators. In this paper, the use of fractional differentiation or integration operators for the performance improvement of adaptive sliding mode control systems is presented. Hitting in finite time is proved and the associated conditions with numerical justifications are given. The proposed technique has been assessed through a set of simulations considering the dynamic model of a two degrees of freedom direct drive robot. It is seen that the control system with the proposed adaptation scheme provides (i) better tracking performance, (ii) suppression of undesired drifts in parameter evolution, (iii) a very high degree of robustness and improved insensitivity to disturbances and (iv) removal of the controller initialization problem. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
This paper focuses on consensus quantized control design problem for uncertain nonlinear multiagent systems with unmeasured states. Every follower can be denoted through a system with unmeasurable states, hysteretic quantized input, and unknown nonlinearities. Fuzzy state observer and Fuzzy logic systems are employed to estimate unmeasured states and approximate unknown nonlinear functions, respectively. The hysteretic quantized input can be split into two bounded nonlinear functions to avoid chattering problem. By combining adaptive backstepping and first‐order filter signals, an observer‐based fuzzy adaptive quantized control scheme is designed for each follower. All signals exist in closed‐loop systems are semiglobally uniformly ultimately bounded, and all followers can accomplish a desired consensus results. Finally, a numerical example is employed to elaborate the effectiveness of proposed control strategy.  相似文献   

9.
In this paper, an adaptive control approach is designed for compensating the faults in the actuators of chaotic systems and maintaining the acceptable system stability. We propose a state‐feedback model reference adaptive control scheme for unknown chaotic multi‐input systems. Only the dimensions of the chaotic systems are required to be known. Based on Lyapunov stability theory, new adaptive control laws are synthesized to accommodate actuator failures and system nonlinearities. An illustrative example is studied. The simulation results show the effectiveness of the design method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
针对在实际控制系统中,如果不考虑输入饱和而设计控制器,闭环系统的稳定性无法保证,讨论了具有输入饱和的不确定非线性交联系统的分散控制问题。利用Riccati方程的方法、Lyapunov稳定理论和矩阵理论,研究了一类具有输入饱和的不确定非线性关联大系统的分散鲁棒镇定问题,给出了该类系统可分散鲁棒控制的一个充分条件,并提出了一种分散鲁棒控制器的设计方法。同时,考虑了一类具有输入饱和的不确定非线性相似关联大系统,由于相似系统的结构特点,给出了简洁的分散鲁棒控制条件。  相似文献   

11.
In this article, a decentralized adaptive integral terminal sliding mode control is presented for a class of nonlinear connected systems. It is assumed that the system is also confronted by unknown disturbances, while the interconnections between subsystems are assumed unknown. An integral terminal sliding surface for each subsystem is locally considered to guarantee the stability of the closed-loop system, and to increase the convergence speed during a tracking task. The unknown interconnections between subsystems are estimated using adaptive rules. An appropriate Lyapunov candidate is chosen to perform global stability analysis. In this regard, design parameters are chosen such that the closed-loop stability is ensured. Performance of the proposed method for a mechanical connected system, including two chaotic subsystems, is shown through simulations.  相似文献   

12.
A robust adaptive steering control method is proposed to solve the control problem of the unmanned surface vehicle (USV) with uncertainties, unknown control direction, and input saturation. In the controller design process, the adaptive fuzzy system is incorporated into dynamic surface control (DSC) to approximate the uncertainty term induced by external environmental disturbances and model parameters. Then, the Nussbaum function is used to eliminate the requirement for a priori knowledge of the control direction. Besides, to handle the input saturation, the adaptive fuzzy DSC is extended by a second‐order nonlinear filter and antisaturation auxiliary function to compensate for the magnitude and rate saturation of the rudder. All signals of the closed‐loop system are proven to be uniformly ultimately bounded (UUB) by Lyapunov theorem and the Lemma of Nussbaum gain, and the course error can converge to a small neighborhood of zero through choosing design parameters appropriately. Finally, simulation results and comprehensive comparisons are shown for the USV course system, which is demonstrative of the proposed controller's effectiveness and robustness.  相似文献   

13.
In view of the result and performance of control are affected by the existence of input constraints and requirements, adaptive multi-dimensional Taylor network (MTN) funnel control problem is studied for a class of nonlinear systems with asymmetric input saturation in this paper. Firstly, the effect of asymmetric input saturation can overcome by introducing the Gaussian error function, namely, the asymmetric saturation model is represented as a simple linear model with a bounded disturbance. Secondly, MTNs are employed to approximate the unknown functions in the controller design. Then, an adaptive MTN tracking controller is developed by blends the idea of funnel control into backstepping, which can guarantee that the tracking error always meets the given prescribed performance regarding the transient and steady state responses as well as the output of system tracks the give continuous reference signal. Finally, the effectiveness of the proposed control is demonstrated using two examples.  相似文献   

14.
This paper investigates adaptive neural network output feedback control for a class of uncertain multi‐input multi‐output (MIMO) nonlinear systems with an unknown sign of control gain matrix. Because the system states are not required to be available for measurement, an observer is designed to estimate the system states. In order to deal with the unknown sign of control gain matrix, the Nussbaum‐type function is utilized. By using neural network, we approximated the unknown nonlinear functions and perfectly avoided the controller singularity problem. The stability of the closed‐loop system is analyzed by using Lyapunov method. Theoretical results are illustrated through a simulation example. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Passivity with sliding mode control for a class of nonlinear systems with and without unknown parameters is considered in this paper. In fact, a method for deriving a nonlinear system with external disturbances to a passive system is considered. Then a passive sliding mode control is designed corresponding to a given storage function. The passivity property guarantees the system stability while sliding mode control techniques assures the robustness of the proposed controller. When the system includes unknown parameters, an appropriate updated law is obtained so that the new transformed system is passive. The passivation property of linear systems with sliding mode is also analysed. The linear and nonlinear theories are applied to a simple pendulum model and the gravity‐flow/pipeline system, respectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
This article presents an extended-state-observer-based dynamic surface control approach for flexible-joint robot systems with asymmetric input saturation and large unknown dynamic knowledge. Traditional controllers for flexible-joint robot systems usually use approximation technology to deal with unknown dynamics knowledge. Unlike the traditional control algorithm, this article utilizes an extended state observer to estimate the unknown dynamics. For the closed-loop system, the delay strategy handles the time-scale separation issue, the filtering system overcomes the “explosion of differentiation” caused by the repeated differentiation of auxiliary control signals, and the mean-value-theorem solves the input saturation problem of the actuator. The stability analysis implies that estimation errors of extended state observers (ESOs) and other state variables are semiglobally uniformly ultimately bounded. Compared with fuzzy control algorithms, the novel ESO-based dynamic surface control approach not only omits online learning time but also uses only a few control parameters to obtain satisfactory tracking performance. Finally, a comparison simulation experiment is provided to illustrate the effectiveness of the gained conclusions.  相似文献   

17.
The main purpose of this paper is to propose a direct and simple approach, called a self‐tuning design approach, to dealing with any nonsymmetric dead‐zone input nonlinearity where its information is completely unknown. In order to describe the approach, the output tracking problem is considered for a class of uncertain nonlinear systems with any nonsymmetric dead‐zone input. First, a dead‐zone input is represented as a time‐varying input‐dependent function such that the considered dynamical system with dead‐zone input can be transfered into an uncertain nonlinear dynamical system subject to a linear input with time‐varying input coefficient. Then, by making use of the self‐tuning design approach, a class of adaptive robust output tracking control schemes with a rather simple structure is synthesized. Thus, the proposed direct and simple self‐tuning design approach can be easily understood by the engineering designers, and the resulting simple adaptive robust control schemes can be well implemented in most practical engineering control problems. By combining the proposed self‐tuning design approach with other control methods, one may expect to obtain a number of interesting results for a rather large class of uncertain nonlinear dynamical systems with dead‐zone in the actuators. Finally,the simulations of some numerical examples are provided to demonstrate the validity of the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents an adaptive Takagi–Sugeno fuzzy neural network (TS‐FNN) control for a class of multiple time‐delay uncertain nonlinear systems. First, we develop a sliding surface guaranteed to achieve exponential stability while considering mismatched uncertainty and unknown delays. This exponential stability result based on a novel Lyapunov–Krasovskii method is an improvement when compared with traditional schemes where only asymptotic stability is achieved. The stability analysis is transformed into a linear matrix inequalities problem independent of time delays. Then, a sliding mode control‐based TS‐FNN control scheme is proposed to achieve asymptotic stability for the controlled system. Since the TS‐FNN combines TS fuzzy rules and a neural network structure, fewer numbers of fuzzy rules and tuning parameters are used compared with the traditional pure TS fuzzy approach. Moreover, all the fuzzy membership functions are tuned on‐line even in the presence of input uncertainty. Finally, simulation results show the control performance of the proposed scheme. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
This paper investigates the control of chaotic systems in the presence of unknown parameters, model uncertainties, and external disturbance. We first discuss the control of a class of chaotic systems and then investigate the control of general chaotic systems. Based on the adaptive control scheme, some novel criteria are proposed via a backstepping‐like procedure. As an example, the control of the Zhang hyperchaotic system is investigated via a single input. Some numerical simulations are given to demonstrate the robustness and efficiency of the proposed approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
This paper focuses on the problem of adaptive robust tracking control for a class of uncertain multiple-input and multiple-output (MIMO) nonlinear system. Unlike most previous research studies, model dynamics, disturbances, and state variables are unknown in this paper. A novel observer-based direct adaptive neuro-sliding mode control approach is proposed of which the only required knowledge is the system output. By incorporating the Adaptive Linear Neuron (ADALINE) neural network (NN) into the conventional sliding mode observer, the proposed observer has favorable performance. In the controller, a radial basis function (RBF) NN is constructed to approximate the unknown equivalent control laws and the estimation of the sliding surface is applied as the input. A gain-adaptation sliding mode term is designed to enhance the robustness of the control system. Besides, the free parameters of the ADALINE NN and the RBFNN are updated online by adaptive laws to obtain optimal approximation performance. Finally, the comparative simulations are given to show the effectiveness and merits of proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号