首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The present investigation explores the effect of dairy scum oil methyl ester (DSOME) blends and ethanol additive on TV1 Kirloskar diesel engine performance, combustion and emission characteristics. From the experimental study, it is concluded that DSOME-B20 (20% dairy scum biodiesel?+?80% diesel) has shown appreciable performance and lower HC and CO emissions among all other blends. Hence DSOME-B20 is optimised as best fuel blend and it is carried for further investigations to study the effect of bio-ethanol additive on diesel engine performance. From the study it apparent that diesel engine operated with ethanol additive and 20% dairy scum biodiesel blended fuels shown the satisfactorily improved emission characteristics when compared to petroleum diesel fuel operation. Finally, from the experimental investigation, it concludes that addition of ethanol shown the slightly higher HC, CO emission and improved BTE, BSFC, NOx and CO2 than sole B20 biodiesel blend. Among all three (3%, 6% and 9%) ethanol additive ratios, E6% (6%-ethanol with B20) ethanol additive exhibits slightly better BTE, BSFC, cylinder pressure and heat release rate hence 6% ethanol additive with B20 biodiesel blend would furnish beneficial effects in the diesel engine.  相似文献   

2.
An investigational research is carried out to found the performance and emission characteristics of a direct injection (DI) diesel engine with cerium oxide nanoparticles additives in diesel and biodiesel blends. Mahua methyl ester was produced by transesterification and blended with diesel. Cerium oxide nanoparticles of 50 and 100?ppm in proportion are subjected to high-speed mechanical agitation followed by ultra-sonication. The experimentations was conducted on a single cylinder DI diesel engine at a constant speed of 1500?rpm using different cerium-oxide (CeO2)-blended biodiesel fuel (B20?+?50?ppm, B20?+?100?ppm, B50?+?50?ppm and B50?+?100?ppm) and the outcomes were compared with those of neat diesel and Mahua biodiesel blend (B20 and B50). The experimental results indicated that brake thermal efficiency of B20?+?100?ppm cerium oxide was increased by 1.8 with 1% betterment in specific fuel consumption. Emissions of hydrocarbon and carbon monoxide were reasonably lower than Diesel fuel.  相似文献   

3.
Nano-additives can be added to biodiesel blends to improve its performance through better fuel properties. The present study investigated the effects of Al2O3 nano-additives on B20 blends of pongamia and jatropha biodiesel in a vertical single cylinder direct injection compression ignition engine. The fuel properties have been determined for all fuel samples with and without additives addition. The engine study was conducted to analyse the performance and emission characteristics of the blends with and without the additives at varying loads. The emissions from the biodiesel blends were comparatively lesser than that of normal diesel. B20 blend of pongamia biodiesel with additive has shown better performance. Additive-added biodiesel blends show a significant reduction in NOx emission.  相似文献   

4.
ABSTRACT

Biodiesel is proved to be a better substitute of conventional diesel. Economically good biosource is a needed one. In this study, freshwater algae (micro algae) are used for producing the biodiesel. The fuel properties of the biodiesel sample were tested and found within the limits. The B10 and B20 biodiesel blends with diesel are tested in a single cylinder CI engine. The blends show a better performance in CI engine and the values are closer to the conventional diesel. The important engine parameter compression ratio is also made to vary. At the three compression ratios, the biodiesel’s performance trend is quite comparable with diesel.  相似文献   

5.
ABSTRACT

The present study was aimed to produce biodiesel from soybean oil and to investigate its characteristics. Soybean oil-based bio diesel properties are observed and tested in the fuel testing laboratory with standard procedures. It is found that soybean oil-based biodiesel has similar properties as that of diesel fuel. An experimental set-up was used in the study to analyse the performance, combustion and emission of soybean oil biodiesel with respect to normal diesel by using different blends (B20, B40, B60, B80 and B100). It is observed that there is no difficulty found in running the engine, but the performance of the biodiesel blends quite deviated from normal diesel. The combustion characteristics of the tested blends were in agreement with normal diesel. The carbon emissions are much lower for soybean oil biodiesel blends than diesel.  相似文献   

6.
Biodiesel has become one of the potential alternative sources to replace diesel. Some of the limitations of biodiesel include high NO x , poor atomization, poor oxidation stability, cold-flow problems, long-term storage problems, etc. Various strategies were discussed to overcome the limitations of biodiesels. Recent research is on effects of fuel additives or fuel composition modification to reformulate the fuel properties. This article is aimed at presenting the experimental investigation of the effects of isobutanol additive on the engine performance and emission characteristics of biodiesel blends derived from waste vegetable oils. The experimental investigation was conducted on a direct injection four-stroke diesel engine with different blends, B10, B20, B30, B10 (10% ISB), B20 (10% ISB), B30 (10% ISB), B10 (20% ISB), B20 (20% ISB) and B30 (20% ISB), and engine performance and emission characteristics are evaluated and discussed.  相似文献   

7.
Energy utilisation from renewable sources plays a vital role in meeting the demands of a clean environment. Commercialisation of biodiesel is comparatively less than that of other alternative sources due to its suitability and yield. This paper is focused on performance and emission characteristics of neem oil biodiesel and cotton seed oil biodiesel blended with cerium oxide as an additive. The blending proportion was B10, B20, B30, B40 and 100% diesel. The testing was performed in a single-cylinder diesel engine coupled with an exhaust gas analyser. The performance characteristics were obtained in between the brake power with specific fuel consumption and emission characteristics such as carbon monoxide, carbon dioxide and other gases. It was observed that the combination of B20 proportion with CeO2 blend produces effect results with other blends in specific fuel consumption and reduced emission behaviour.  相似文献   

8.
ABSTRACT

Large amount of emissions from vehicles have led to the degradation of urban air quality and have resulted in serious health issues. Biodiesel, a substitute fuel for diesel engine, is receiving great attention worldwide. This work investigates the merits of using neem-biodiesel and diesel blends for single cylinder small direct injection diesel engine. The energy (the first law) and exergy (the second law) analyses of direct injection diesel engine using neem-biodiesel blends have been presented. Taguchi’s ‘L’ 16’ orthogonal array has been used for the design of experiments. The engine was tested at different engine speeds, load percentages and blend ratios, using neem biodiesel. The results show that the optimum operating conditions for minimum brake specific fuel consumption are achieved when the engine speed is 1900?rev/min, load percentage is 75 and the engine is fuelled with B40.  相似文献   

9.
Biodiesel is a promising renewable alternative fuel for diesel. The need of biodiesel fuels for the diesel engines is to restrict the dependency on the fossil fuels in context to the world energy oil crisis. The objective of this article is to investigate the performance and emission characteristics of a CI engine with diesel and blends of canola biodiesel Emulsion at 200, 220 and 240?bar. The fuel injection system in a diesel engine is to achieve a high degree of atomisation for better penetration of fuel in order to utilise the full air charge and to promote the evaporation in a very short time and to achieve higher combustion efficiency. Emulsified fuels showed an improvement in brake thermal efficiency of 28.8% at 240?bar accompanied by the drastic reduction in NOx at 200?bar.  相似文献   

10.
Motorisation and fast depletion of fossil fuel reserves and issues like global warming have led the researchers all over to look for substitute fuels. Biodiesel resulting from vegetable oil is being used around the globe to lessen air pollution and reduce the necessity of diesel fuel. The current study covers the various aspects of N20 neem biodiesel with increased fuel injection pressure. The blends of N20 were tested with increased fuel injection pressure to examine the characteristics such as brake thermal efficiency, fuel consumption, emission and combustion parameters. Experimental results indicated that N20 with 240?bar has a closer performance to diesel, reduced exhaust emission and improved combustion parameters.  相似文献   

11.
The current state of future energy and environmental crises has revitalised the need to find alternative sources of energy due to escalating oil prices and depleting oil reserves. To meet increasing energy requirements, there has been a growing interest in alternative fuels like biodiesel that can become a suitable diesel fuel substitute for compression ignition engine. Biodiesel offers a very promising alternative to diesel fuel, since they are renewable and have similar properties. Calophyllum inophyllum seed oil collected from different restaurants in the Nagapattinam region of South India was converted into methyl esters (biodiesel) by transesterification. Biodiesel produced from C. inophyllum oil was blended with diesel by different volume proportions (25%, 50%, and 75%). Biodiesel and its blends were tested on a direct injection (DI) diesel engine at a constant speed by varying loads from 0% to 100% in steps of 20% to analyse its performance, emission, and combustion characteristics. The results obtained were compared with that of diesel fuel. B25 (27.5%) showed better performance than diesel fuel (26.28%) at full load and B50 showed performances similar to diesel fuel. Smoke density of B25 was slightly (2.6%) higher than that of diesel at full load conditions. At full load, measured carbon monoxide emissions for B25 and B50 were 4% lower than that of diesel. Hydrocarbon emissions for B25 and B100 were 5.37% and 25.8% higher than that of diesel, respectively. Nitrogen oxides (NOx) emission was lower for all biodiesel blends. NOx emissions of B100 and B75 were lower than that of diesel by 22.16% and 13.29% at full load, respectively. Combustion profile was smoother, and no knocking problem was observed while operating with biodiesel blends. B75 produced peak cylinder pressure.  相似文献   

12.
The present experimental investigation focuses on the combined effects of multiwalled carbon nanotubes (MWCNTs) and exhaust gas recirculation (EGR) of a diesel engine fuelled with Calophyllum inophyllum biodiesel blends. The C. inophyllum biodiesel-diesel blend was prepared in a proportion of 20% biodiesel and 80% diesel (B20) by a volumetric basis with a magnetic stirrer. The MWCNTs (in the mass fraction of 40?ppm) were dispersed into the B20 fuel with the help of an ultrasonicator. The results show that brake thermal efficiency increases by 7.6% with the addition of MWCNTs to the B20 fuel, decreases by 2.42% with the EGR to the B20 fuel, and increases by 2.26% with the addition of MWCNTs and EGR to the B20 fuel compared to the B20 fuel. The maximum cylinder pressure and heat release rate was occurred as 67.35 bar and 74.80?kJ/m3 deg for the B20MWCNT40 fuel at full load condition. The CO and HC emissions for the B20MWCNT40+20%EGR fuel sample were lower compared to the B20 fuel. The Smoke emissions were reduced for B20MWCNT40 fuel compared to the B20 fuel. The NOx emissions were reduced by 25.6%, 29.7% for B20+20%EGR, B20MWCNT40+20%EGR fuel samples compared to the B20 fuel.  相似文献   

13.
This article is an effort to address the need for a non-cooking oil-based biodiesel. Here, the experimental work is done on a single cylinder, direct injection CI engine using cashew nut shell oil biodiesel blends under constant speed. The cashew nut shell liquid (CNSL) biodiesel is blended with the diesel fuel and used as biodiesel blend. Blends used for testing are B20, B40 and B60. The effect of the fuels on engine power, brake thermal efficiency (BTE) and exhaust gas temperature was determined by performance tests. The influences of blends on CO, CO2, HC and NOx emissions were investigated by emission tests. The BTE values of biodiesel are closer to diesel. Compared to diesel, all the biodiesel blends gave lesser unburnt hydrocarbon (HC), carbon monoxide (CO) and smoke emissions. Slightly higher NOx emissions were found in CNSL biodiesel blends, which is typical of the other biodiesels.  相似文献   

14.
In the present investigation, the effect of thermal barrier coated piston on the performance and emission characteristics of mahua-biodiesel-fuelled diesel engine was studied and compared with those of neat diesel fuel. The piston, cylinder walls and the valves of the engine were coated with 0.25?mm thickness of Al2O3 material without affecting the compression ratio of the engine. Experiments were conducted using diesel and biodiesel blend (B20) in the engine with and without coating. The results revealed that specific fuel consumption was decreased by 8.5% and the brake thermal efficiency was increased by 6.2% for biodiesel blend with coated engine compared with the base engine with neat diesel fuel. The exhaust emissions CO, NOx and HC emissions were also decreased for biodiesel blend with coated engine compared with base engine.  相似文献   

15.
Numerous laboratory studies report carbon monoxide, hydrocarbon, and particulate matter emission reductions with a slight nitrogen oxides emission increase from engines operating with biodiesel and biodiesel blends as compared to using petroleum diesel. We conducted a field study on a fleet of school buses to evaluate the effects of biodiesel use on gaseous and particulate matter fuel-based emission factors under real-world conditions. The field experiment was carried out in two phases during winter 2004. In January (phase I), emissions from approximately 200 school buses operating on petroleum diesel were measured. Immediately after the end of the first phase measurement period, the buses were switched to a 20% biodiesel blend. Emission factors were measured again in March 2004 (phase II) and compared with the January emission factors. To measure gaseous emission factors we used a commercial gaseous remote sensor. Particulate matter emission factors were determined with a combination of the gaseous remote sensor, a Lidar (light detection and ranging), and transmissometer system developed at the Desert Research Institute of Reno, NV, U.S.A. Particulate matter emissions from school buses significantly increased (up to a factor of 1.8) after the switch from petroleum diesel to a 20% biodiesel blend. The fuel used during this campaign was provided by a local distributor and was independently analyzed at the end of the on-road experiment. The analysis found high concentrations of free glycerin and reduced flash points in the B 100 parent fuel. Both measures indicate improper separation and processing of the biodiesel product during production. The biodiesel fuels used in the school buses were not in compliance with the U.S.A. ASTM D6751 biodiesel standard that was finalized in December of 2001. The U.S.A. National Biodiesel Board has formed a voluntary National Biodiesel Accreditation Program for producers and marketers of biodiesel to ensure product quality and compliance with the ASTM standard. The results of our study underline the importance of the program since potential emission benefits from biodiesel may be reduced or even reversed without appropriate fuel quality control on real-world fuels.  相似文献   

16.
ABSTRACT

The energy crisis created by depletion of fossil fuels and the toxic emissions from the fossil fuel demands for eco-friendly potential alternative sources of energy. Even though unclean, biodiesel is found to be a potential alternative for the fossil fuels. In the present work, the emission characteristics and performance of biodiesel blend with and without ZNO additive was studied. There are four biodiesel blends studied in the first part of the research and found that the B25 combination gives a better result compared to others; therefore, this blend is tested with three proportion of ZNO additive in the second part of the research. The addition of 125?PPM of ZNO to the selected B25 blends gives a better performance, the efficiency improvement is found to be 4.2% and the emission of NOx is by 10.3% under full load condition.  相似文献   

17.
In this experiment, the performance, emission, and combustion characteristics of a diesel engine were tested using bio-fuel (Anise oil) at different loads. The main focus of this study was to compare the existing biodiesel blends with the proposed mixture (anise?+?cerium oxide) of biodiesel blends in terms of engine parameters, cost, efficiency, and pollution control. The blends used in this experiment are B10 (Biodiesel-10%), B20 (Biodiesel-20%), and B30 (Biodiesel-30%). The emission and performance parameters considered for the test are SFC (specific fuel consumption), CO (carbon monoxide), NOX (nitrogen oxide), and HC (hydrocarbon). These parameters were tested for different load conditions such as 0%, 25%, 50%, 75%, and 100%. From the results, it shows that SFC is lower for B20 blend compared to that of pure diesel fuel, while B10, B30, B40, and B50 blends have slightly higher values. From the experiment, it is found that emissions of the HC and NOx were reduced and CO emission is slightly higher than the pure diesel.  相似文献   

18.
Diesel engines have been the ‘primus motor’ of transportation in the world since a long time now. However, the depletion of fuel supplies, recent concerns over the environment and the ever-increasing fuel prices have made the search for an alternative fuel of paramount importance. A considerable amount of interest has been shown by researchers to evaluate different plant and vegetable oils as a replacement of diesel. Based on this background, an attempt to investigate Thyme oil as a substitute to diesel without any modifications in the engine was made. The experiment was conducted on a 1500?rpm, four-stroke, diesel engine with single cylinder which is water cooled. Cerium Oxide nano additive was added to the blends of thyme oil with diesel and its effects on the brake thermal efficiency, specific fuel consumption (SFC) and exhaust emissions were examined. The experimental results portrayed better values of brake thermal efficiency and low SFC with B10 (10 parts of oil with 90 parts of diesel) and B20 samples of the blends, while the B40 blend showed lower NOx emissions at all loads. The HC content was found to increase with the increasing quantity of thyme oil in the blends.  相似文献   

19.
Vateria indica Linn seeds were found to contain nearly 19% of oil/fat content. This fat is converted into biodiesel by a novel method by the authors at the biodiesel preparation facility at NITK, Surathkal, India. As biodiesel is a promising alternative fuel for petro diesel in compression ignition (CI) engines, this biofuel is tested in a single-cylinder diesel engine. The objective of this work is to find combustion, performance and emission characteristics of a CI engine with diesel and blends of V. indica biodiesel at 180, 200 and 220?bar injection pressures. Blending is done in volumetric ratios of 10%, 15%, 20% and 25% of biodiesel with diesel which are called as B10, B15, B20 and B25. The idea of increasing fuel injection pressure is to promote atomisation and full penetration into the combustion chamber leading to better combustion. Blend B25 showed best thermal efficiency of the order of 33.03% and the least NOX emission of 1047?ppm at 220?bar injection pressure at 75% load.  相似文献   

20.
The full load performance characteristics of a diesel engine fuelled with palm kernel biodiesel and its blend with diesel fuel are presented in this paper. The biodiesel was synthesised from Nigerian palm kernel oil through a direct base catalysed transesterification process using sodium hydroxide and methanol as the catalyst and alcohol, respectively. The produced biodiesel was blended with neat diesel fuel at a ratio of 20% biodiesel to 80% diesel by volume. The engine torque, brake power, brake specific fuel consumption and brake mean effective pressure were determined for each of the fuels at 400 rpm intervals between 1200 and 3600 rpm. In other to establish a baseline for comparison, the engine was first run on neat diesel. The test results interestingly revealed that the fuel blend (B20) produced higher torque at low and medium engine speeds than neat diesel fuel and unblended biodiesel (B100). This suggests that it can be a suitable fuel for heavy duty engines that are required to develop high torque at low engine speeds. It was also observed that diesel fuel developed higher torque and brake power than the unblended biodiesel (B100) at all tested speeds and showed the least brake specific fuel consumption possibly because of its higher heating value. In all, the palm kernel biodiesel and its blend (B20) exhibited performance characteristic trends very similar to that of diesel fuel thus confirming them as suitable alternative fuels for compression ignition engines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号