首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
《材料科学技术学报》2019,35(8):1523-1531
B4Cp/6061Al composites have become important structural and functional materials and can be fabricated by powder metallurgy and subsequent hot rolling. In this work, the effects of the hot-pressing temperature on microstructures and mechanical behaviors of the B4Cp/6061Al composites were investigated. The results showed that compared with the T4 heat treated B4Cp/6061Al composite hot pressed at 560 °C, the yield strength and failure strain of the composites hot pressed at 580 °C were increased to 235 MPa and 18.4%, respectively. This was associated with the interface bonding strength between the B4C particles and the matrix. However, the reaction products, identified to be MgAl2O4 phases, were detected in the composites hot pressed at 600 °C. The formation of the MgAl2O4 phases resulted in the Mg depletion, thus reducing the yield strength to 203.5 MPa after the T4 heat treatment due to the effect of the solid solution strengthening being weakened. In addition, the variation of hardness and electrical conductivity was mainly related to the Mg content in the matrix. Based on the as-rolled microstructures observed by SEM, SR-μCT and fracture surfaces, the deformation schematic diagram was depicted to reflect the tensile deformation process of the composites.  相似文献   

2.
This paper focuses on studying the fatigue crack growth (FCG) characteristics and fracture behaviours of 30 wt% B4C/6061Al composites fabricated by using powder metallurgy and hot extrusion method. Compact tension (CT) specimens having incisions parallel to the extrusion direction (T‐D) and perpendicular to the extrusion direction (E‐D) were investigated through FCG tests. Results show that, at low/medium stress‐intensity factor range levels (ΔK ≤ 9), crack propagation rate in E‐D specimens is lower than that in T‐D specimens because the elongated B4C particles parallel to the extrusion direction in E‐D specimens can deflect the crack. The scanning electron microscope micrographs of the fractured surface illustrate that crack mainly propagates in the matrix alloy at the initial stage of its propagation and propagates more remarkably near the particle‐matrix interface with the increase of ΔK value. B4C particles are also found to be easy to fracture during the rapid crack propagation. Based on fracture analyses, considering the impacts of factors like crack deviation, plastic zone size at the crack tip, and crack driving force, a 2‐D crack propagation model was developed to study the fatigue crack propagation mechanism in the 30 wt% B4C/6061Al composite.  相似文献   

3.
Friction stir processing (FSP) is a unique approach being presently researched for composite fabrication. In the present investigation, Al-B4C surface composite was fabricated through FSP by incorporating B4C powder particles into Al–Mg–Zn–Cu alloy (AA 7075) matrix. The influence of varying powder particle reinforcement strategies on the microstructure, powder distribution, microhardness, and wear resistance of the surface composite is reported. In addition, AA 6061/B4C composites were prepared using the same parameter set and the powder distribution in the composite was compared to that in the AA 7075/B4C composite. More homogeneous dispersion of B4C powder was observed in AA 6061 as compared to AA 7075 substrate. Among the prepared AA 7075/B4C composites, the best B4C powder distribution was detected in samples processed using fine powder and incorporating the change in stirring direction between passes. The hardness and wear resistance of the prepared composites were almost doubled attributing to several strengthening mechanisms and B4C powder distribution in the AA 7075 matrix.  相似文献   

4.
张修超  蔡晓兰  周蕾  乔颖博  吴灿  张爽  朱伟 《材料导报》2018,32(15):2653-2658
制备B4C增强Al基复合材料存在的难点主要是B4C颗粒在Al基体中的均匀分布及界面结合。本研究采用卧式搅拌高能球磨法制备了B4C/Al复合粉体,研究了搅拌轴转速和球磨时间对B4C/Al复合粉体结构演变及分布均匀性的影响。结果表明,随搅拌轴转速的提高,复合粉体受磨球碰撞时所获能量增大,增强体颗粒瞬间被破碎同时使Al粉发生较大的塑性变形,随球磨时间的延长,破碎的B4C颗粒逐渐在Al基体中分散均匀并与基体焊合,利于粉体实现均匀分布和良好的界面结合。球磨过程中B4C沿颗粒棱边脆性断裂,在Al粉的冷焊变形过程中被嵌入,形成一种片状化的Al粉基体包裹B4C增强相的复合粉体。在搅拌轴转速为600/800r/min(交变转速,交变频率为1min),球磨时间为2h时,B4C/Al复合粉体的粒度得到细化,B4C颗粒在Al基体中分布均匀、界面结合紧密。  相似文献   

5.
《材料科学技术学报》2019,35(9):1825-1830
B4C particulate-reinforced 6061Al composite was fabricated by powder metallurgy method. The as-rolled composite possesses high tensile strength which is comparable to that of the peak-aged 6061Al alloy. More importantly, the microstructures and mechanical properties are thermally stable during long-term holding at elevated temperature (400 °C). The microstructual contributions to the strength of the composite were discussed. Transmission electron microscopy (TEM) analysis indicates that the in-situ formed reinforcement Mg(Al)B2, as products of the interfacial reactions between B4C and the aluminum matrix, show not only good resistance to thermal coarsening but also strong pinning effect to the grain boundaries in the alloy matrix.  相似文献   

6.
ABSTRACT

The dynamic compression properties of B4C/6061Al neutron absorber composites (NACs) with three B4C volume fractions (20–40%), fabricated by power metallurgy, were studied. Compression tests were conducted at strain rates ranging from 760 to 1150?s?1, using a split Hopkinson pressure bar. The damage mechanism was studied through microstructural analysis. Results show that the B4C particles exhibited a uniform distribution in the 6061Al matrix. The NACs dynamic strength was found to improve with increasing quantities of B4C particles, and with strain rate. The damage mechanisms include particle fracture and interface debonding. Dislocation pile-up was observed at grain boundaries and at the interface between particles and the matrix. A constitutive model under dynamic compression was developed based on the Johnson–Cook model.

This paper is part of a thematic issue on Nuclear Materials.  相似文献   

7.
Aluminum surface composites have gained huge importance in material processing due to their noble tribological characteristics. The reinforcement of solid lubricant particles with hard ceramics further enriches the tribological characteristics of surface composites. In the current study, friction stir processing was chosen to synthesize hybrid surface composites of aluminum containing B4C and MoS2 particles with anticipated improved tribological behavior. B4C and MoS2 powder particles in 87.5: 12.5 ratio were reinforced into the AA6061 by hole and groove method. Microstructural observations indicated that reinforcement particles are well distributed in the matrix. The hardness and wear resistance of hybrid surface composites improved as compared to the base material, due to well distributed abrasive B4C and solid lubricant MoS2 particles in AA6061. The hybrid surface composites achieved ∼32 % increased average hardness as compared to the base material. Hole method revealed ∼13 % better wear resistance compared to the groove method for friction stir processed hybrid surface composite, attributing to an improved homogeneity of particle distribution shown by zigzag hole pattern. Moreover, friction stir processed AA6061 without reinforcement particles exhibited reduced hardness and wear resistance due to loss of strengthening precipitates during multi-pass friction stir processing.  相似文献   

8.
Copper matrix composites containing different volume fractions of B4C particles (0–15%) were first fabricated by spark plasma sintering followed by hot rolling in atmospheric environments, then their microstructures, phase compositions, mechanical properties and sintering mechanism were investigated. It was found that B4C particles distributed relatively homogeneously in the copper matrix. Reaction products of CuC8 and B were observed and identified in the composite. Under increasing B4C particle content, the ultimate tensile, yield strength and elongation to fracture of the composites decreased. Failure mode of composites included: (1) the interfacial debonding and (2) the cleavage fracture of copper. Moreover, micro-discharge between the adjacent particles occurred, and its led to local high temperature at the interface.  相似文献   

9.
This work focuses on the fabrication of aluminum (6061-T6) matrix composites (AMCs) reinforced with various weight percentage of B4C particulates by modified stir casting route. The wettability of B4C particles in the matrix has been improved by adding K2TiF6 flux into the melt. The microstructure and mechanical properties of the fabricated AMCs are analyzed. The optical microstructure and scanning electron microscope (SEM) images reveal the homogeneous dispersion of B4C particles in the matrix. The reinforcement dispersion has also been identified with X-ray diffraction (XRD). The mechanical properties like hardness and tensile strength have improved with the increase in weight percentage of B4C particulates in the aluminum matrix.  相似文献   

10.
Abstract

Composite materials based on aluminium are used in different fields where weight, thermal expansion, and thermal stability are key requirements. The aim of the present study was to develop a universal method and scientific approach for evaluating the design of lightweight, Al matrix composites with low coefficients of thermal expansion (CTE) and high dimensional stability, and to produce such composites using the vacuum plasma spray (VPS)process. The methodology is general and could be applied to other composite systems. The VPS-produced Al and Al alloy 6061 based composites were reinforced with a variety of ceramic particles including Si3N4, B4C, TiB2, and 3Al2O3.2SiO2. These composites have low CTE values ((12–13)×10-6 K-1), similar to that of steel, and high dimensional stability (capable of keeping dimensions stable with changes in temperature). They have low porosity (98–99%dense) and a uniform distribution of the strengthening particles. Hot rolling of the VPS-formed composites, followed by heat treatment, resulted in a significant improvement in the mechanical properties. Deformed and heat treated 6061 based composites, containing 20 wt-%TiB2 and 40 wt-%3Al2O3?2SiO2, showed excellent mechanical properties (ultimate tensile strength 210–250 MPa, elongation >4%).  相似文献   

11.
In the present work, CuZrAl metallic glass particles were synthesized by mechanical alloying method. High relative density Al-based composites (ABCs) reinforced with different volume fraction of CuZrAl particles have been fabricated by spark plasma sintering (SPS) technique. The microstructures, mechanical properties and corrosion resistance in seawater solution of the ABCs were investigated. The sintered products are all composed of fcc-Al, Al3Zr and CuAl2 phases. For CuZrAl addition, bright and network precipitates are clearly observed in the Al matrix. On account of the interdiffusion of Al and Cu atoms between matrix and reinforcement, the ABCs present the good interfacial bonding. Compared with SPS-ed pure Al bulk, ABCs possess the excellent mechanical properties. It is mainly ascribed to the second phase strengthening, continuously distributed precipitates, high relative density or bonding interface, and grain refinement strengthening. Thereinto, combined with a degree of plastic strain, the composite with 20?vol% CuZrAl reinforcement reveals the best micro-hardness (290?HV), and the highest yield strength and fracture strength of 408 and 459?MPa, respectively. Moreover, the ABCs bear the better pitting resistance with wide passive region in seawater solution.  相似文献   

12.
Pre-treated Si powder (Sip) and 6061Al powder were used to fabricate high-fraction Sip/6061Al composites via pressureless sintering, and the effects of the Sip content and the sintering temperature on the microstructures and properties of the composites were studied. The results show that in the composites, there exist MgAl2O4 nanocrystalline particles, and the Si phase varied from a discontinuous particulate state to a semi-continuous skeleton state as the Si content increased from 30 to 50?wt-%. Densities, bending strengths, hardness, and thermal conductivities of the composites all increased initially and then decreased with the sintering temperature. The 680°C sintered 30?wt-% Sip/6061Al composites and the 700°C sintered 50?wt-% Sip/6061Al composites have the optimal mechanical and thermophysical properties.  相似文献   

13.
基于B4C和W良好的屏蔽中子和γ射线性能,采用6061铝合金作为基体,设计了一种新型双屏蔽(B4C-W)/6061Al层状复合材料,通过放电等离子烧结后加热轧制成板材,对制备的复合材料微观组织和力学性能进行了研究。结果表明,屏蔽组元B4C和W颗粒均匀地分布在6061Al基体中,层界面、B4C/Al、W/Al异质界面之间结合良好,无空隙和裂纹。在颗粒与基体界面处形成扩散层,扩散层的厚度约为6 μm (W/Al)和4 μm (W/Al)。轧制态的(B4C-W)/6061Al层状复合板的屈服强度(109 MPa)和极限抗拉强度(245 MPa)明显优于烧结态的复合材料,但断裂韧性降低。强度提高的原因主要是轧制后颗粒的二次分布、均匀性及界面结合强度提高,基体合金的晶粒尺寸减小,位错密度增加。层状复合板的断裂方式为基体合金的韧性断裂和颗粒的脆性断裂。   相似文献   

14.
B4C中B的同位素10B具有较大的热中子吸收截面,是良好的中子吸收体。采用放电等离子烧结法(SPS)制备了B4C体积分数为10%~40%的B4C/6061Al中子吸收复合材料,对B4C/6061Al中子吸收复合材料的微观组织形貌及物相组成进行了观察分析,并测试了其拉伸性能。结果表明:B4C颗粒均匀地分布在6061Al基体中,颗粒尖端放电产生的等离子体能够促进B4C颗粒/6061Al基体界面结合,材料内部的物相主要有Al、B4C、AlB2和Al3BC。随着B4C体积分数的增加,B4C/6061Al中子吸收复合材料的致密度降低,抗拉强度先增加后降低,断裂机制主要为6061Al基体及B4C颗粒/6061Al基体界面的撕裂。  相似文献   

15.
The present study investigates the processing of heat-treated silicon carbide (SiC) particle-reinforced 6061 aluminum alloy (AA) composites. As-received SiC powders were heat treated at 1300ºC, 1400ºC, and 1500ºC in nitrogen atmosphere for 2 h, and the 6061 AA–SiC composites were developed by spark plasma sintering at 560ºC and 60 MPa for 5 min in argon atmosphere. The amorphous silicon nitride is found to form in SiC particles as a result of heating at 1400ºC. The microstructure of the composites exhibited uniform distribution of SiC or SiC/Si3N4 particles in 6061 AA matrix. Further, the heat-treated SiC-reinforced 6061AA composites exhibited improved mechanical properties. A typical combination of UTS of 240 MPa and elongation of 21% is obtained for the 6061 AA composites prepared using SiC powders heated at 1400ºC.  相似文献   

16.
In the present work, an indigenously developed low cost modified stir casting technique is developed for the processing of 6061 Al‐B4C composites containing high‐volume fraction of boron carbide particles (up to 20 vol. %). The influence of varying reinforcement content on the spatial distribution of boron carbide in the aluminum matrix is qualitatively characterized using scanning electron microscope. At a lower volume fraction of reinforcement, wide particle free zone and large interparticle spacing were observed in the matrix while the composite with high reinforcement content displayed relatively homogeneous and discrete particle distribution. X‐ray diffraction analysis confirms the presence of only aluminum and boron carbide diffraction peaks, indicating that no significant reaction occurs during composite processing. The tensile behavior of composites revealed that strength and ductility are influenced by varying particulate content. The quantitative analysis of strengthening mechanism in the casted composites showed that higher volume fraction of boron carbide lead to larger values of thermal dislocation strengthening, grain size and strain gradient strengthening. The morphology of fracture surfaces reveals the presence of dimple network and the average size of dimples gradually decreases with the increase in particulate content, which indicates the co‐existence of ductile and brittle fracture.  相似文献   

17.
Trimodal Al Metal-Matrix-Composites (MMCs), consisting of a nanocrystalline Al phase (NC-Al), B4C reinforcement particles, and a coarse-grain Al phase (CG-Al), were successfully fabricated on both lab and commercial scales. Multi-scale microstructural features contributing to the exceptional high strength of Trimodal Al MMCs were examined via comprehensive microstructural and spectroscopic analysis. Size and distribution of nanocrystalline Al grains, B4C particles, coarse-grain Al, and uniformity in distribution were examined and quantified. Other features such as dispersoids with and without nitrogen (e.g., Al2O3, Al4C3), dislocation density, and interfacial characteristics were also examined with due respect for their contributions to the strength of Trimodal Al MMCs.  相似文献   

18.
In order to improve the wettability between Al melt and B4C ceramic preform during fabricating B4C/Al composites by pressureless infiltration technique, trace amount of Ti particulates with high melting point was added into the starting materials as infiltration inducer. A simple and cost-effective method, metal-assisted pressureless infiltration technique, was developed to fabricate light-weight B4C/Al composites. The microstructure, phases, and mechanical behavior of B4C/Al composites were characterized by SEM, XRD, and mechanical property test. The density of the as-fabricated B4C/Al composites was about 2.75 g/cm3 and the relative density of this kind of composites was over 97%. The as-fabricated B4C/Al composites exhibited rather well wear resistance. The flexural and compressive strengths of the as-fabricated B4C/Al composites were about 200 MPa and 670 MPa, respectively.  相似文献   

19.
Developing earth‐abundant and efficient electrocatalysts for photoelectrochemical water splitting is critical to realizing a high‐performance solar‐to‐hydrogen energy conversion process. Herein, phosphorus‐rich colloidal cobalt diphosphide nanocrystals (CoP2 NCs) are synthesized via hot injection. The CoP2 NCs show a Pt‐like hydrogen evolution reaction (HER) electrocatalytic activity in acidic solution with a small overpotential of 39 mV to achieve ?10 mA cm?2 and a very low Tafel slope of 32 mV dec?1. Density functional theory (DFT) calculations reveal that the high P content both physically separates Co atoms to prevent H from over binding to multiple Co atoms, while simultaneously stabilizing H adsorbed to single Co atoms. The catalytic performance of the CoP2 NCs is further demonstrated in a metal–insulator–semiconductor photoelectrochemical device consisting of bottom p‐Si light absorber, atomic layer deposition Al–ZnO passivation layers, and the CoP2 cocatalyst. The p‐Si/AZO/TiO2/CoP2 photocathode shows a photocurrent density of ?16.7 mA cm?2 at 0 V versus reversible hydrogen electrode (RHE) and an output photovoltage of 0.54 V. The high performance and stability are attributed to the junction between p‐Si and AZO, the corrosion‐resistance of the pinhole‐free TiO2 protective layer, and the fast HER kinetics of the CoP2 NCs.  相似文献   

20.
In recent years, aluminum alloy based metal matrix composites (MMC) are gaining importance in several aerospace and automobile applications. Aluminum 6061 has been used as matrix material owing to its excellent mechanical properties coupled with good formability and its wide applications in industrial sector. Addition of SiCp as reinforcement in Al6061 alloy system improves its hardness, tensile strength and wear resistance. In the present investigation Al6061-SiCp composites was fabricated by liquid metallurgy route with percentages of SiCp varying from 4 wt% to 10 wt% in steps of 2 wt%. The cast matrix alloy and its composites have been subjected to solutionizing treatment at a temperature of 530°C for 1 h followed by quenching in different media such as air, water and ice. The quenched samples are then subjected to both natural and artificial ageing. Microstructural studies have been carried out to understand the nature of structure. Mechanical properties such as microhardness, tensile strength, and abrasive wear tests have been conducted both on matrix Al6061 and Al6061-SiCp composites before and after heat treatment. However, under identical heat treatment conditions, adopted Al6061-SiCp composites exhibited better microhardness and tensile strength reduced wear loss when compared with Al matrix alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号