首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ti3SiC2 filler has been introduced into SiCf/SiC composites by precursor infiltration and pyrolysis (PIP) process to optimize the dielectric properties for electromagnetic interference (EMI) shielding applications in the temperatures of 25–600 °C at 8.2–12.4 GHz. Results indicate that the flexural strength of SiCf/SiC composites is improved from 217 MPa to 295 MPa after incorporating the filler. Both the complex permittivity and tan δ of the composites show obvious temperature-dependent behavior and increase with the increasing temperatures. The absorption, reflection and total shielding effectiveness of the composites with Ti3SiC2 filler are enhanced from 13 dB, 7 dB and 20 dB to 24 dB, 21 dB and 45 dB respectively with the temperatures increase from 25 °C to 600 °C. The mechanisms for the corresponding enhancements are also proposed. The superior absorption shielding effectiveness is the dominant EMI shielding mechanism. The optimized EMI shielding properties suggest their potentials for the future shielding applications at temperatures from 25 °C to 600 °C.  相似文献   

2.
A high density Ti3SiC2/20 vol % SiC composite was hot pressed under a uniaxial pressure of 45 MPa for 30 min in an Ar atmosphere at 1600 °C. The grain size of the Ti3SiC2/SiC composite was finer than that of monolithic Ti3SiC2, though the composite was hot pressed at a higher temperature, due to the dispersion of SiC particles in the Ti3SiC2 matrix. Room temperature fracture toughness of the composite and Vickers hardness were measured as 5.4 MPa m1/2 and 1080 kg mm–2, respectively. A higher flexure strength of the composite compared to that of monolithic Ti3SiC2 was measured both at room temperature and up to 1200 °C. At 1000 °C, the composite showed a lower oxidation rate than that of monolithic Ti3SiC2.  相似文献   

3.
Ti3SiC2/insulating polyaniline (Ti3SiC2/PANI) composites were prepared by solution blending and subsequently by hot-pressing process. The dielectric permittivity and electromagnetic interference (EMI) shielding effectiveness (SE) of the composites were determined in the frequency range of 8.2–12.4 GHz (X-band). Both real and imaginary permittivities increase with the increasing Ti3SiC2 content, and which are attributed to the enhanced displacement current and conduction current. The EMI SE of the composites can be greatly improved by addition of Ti3SiC2 filler, which may be ascribed to the increase of electrical conductivity of the composites. It is also found that the reflection of electromagnetic radiation is a dominant mechanism for EMI shielding of the composite. An average EMI SE of 23 dB can be achieved in the X-band range for the composite with 25 wt% Ti3SiC2 content, which shows the potential of the Ti3SiC2/PANI composites as EMI shielding materials for commercial applications.  相似文献   

4.
Abstract

Ternary carbide Ti3 SiC2 was first synthesised through a pulse discharge sintering (PDS) technique from mixtures of Ti, SiC, and C with different molar ratios. Sintering processes were conducted at 1200 – 1400°C for 15 – 60 min at a pressure of 50 MPa. The phase constituents and microstructures of the synthesised samples were analysed by X-ray diffraction (XRD) technique and observed by scanning electron microscopy (SEM). The results showed that, for samples sintered from 3Ti/SiC/C powder at 1200 – 1400°C, TiC is always the main phase and only little Ti3 SiC2 phase is formed. When the molar ratios Ti : SiC : C were adjusted to 3 : 1.1 : 2 and 5 : 2 : 1, the purity of Ti3 SiC2 in the synthesised samples was improved to about 93 wt-%. The optimum sintering temperature for Ti3 SiC2 samples was found to be in the range 1250 – 1300°C and all the synthesised samples contain platelike grains. The relative density of Ti3 SiC2 samples was measured to be higher than 99% at sintering temperatures above 1300?C. It is suggested that the PDS technique can rapidly synthesise ternary carbide Ti3 SiC2 with good densification at lower sintering temperature.  相似文献   

5.
Dense Ti3SiC2 prepared by reactive HIP   总被引:13,自引:0,他引:13  
The dense polycrystalline Ti3SiC2 has been synthesized by reactive HIPing of Ti, SiC and C powders. The bulk material with the highest Ti3SiC2 content about 97 vol % was obtained when treated at 1500°C, 40 MPa for 30 min. The density was 99% of the theoretical value. The Ti3SiC2 grains had the columnar and plate-like shapes. The grains were well boned to form a network structure. Many stacking faults were observed along the (001) plane of Ti3SiC2. The Vickers hardness, Young's modulus, flexural strength and fracture toughness were 4 GPa, 283 GPa, 410 MPa and 11.2 MPa m1/2, respectively. The Ti3SiC2 was stable up to 1100°C in air. The electrical resistivity was 2.7×10–7 ·m at room temperature. The resistivity increased linearly with the increasing temperature. It may be attributed to a second order phase transition. The Seebeck coefficient was from 4 to 20 V/K in the temperature range 300–1200 K. It seems that Ti3SiC2 is semi-metallic with hole carriers from this small positive value.  相似文献   

6.
 Titanium silicon carbide (Ti3SiC2) is a damage tolerance material that is expected to be used in a number of high temperature applications. In this work, the microstructure and damage tolerance mechanism of Ti3SiC2 was investigated. The result demonstrated that the Ti3SiC2 ceramics prepared by the in-situ hot pressing/solid-liquid reaction process had a dual microstructure, i.e., large laminated grains were distributed within small equiaxial grains. This microstructure is analogous to that of platelets reinforced ceramic matrix composites. The bending test using single-edge-notched-beam specimens revealed that Ti3SiC2 was a damage tolerance material. The damage tolerance mechanisms for Ti3SiC2 are basal plane slip, grain buckling, crack deflection, crack branching, pull-out and delamination of the laminated grains. Received: 7 December 1998/Reviewed and accepted: 15 December 1998  相似文献   

7.
Thermal, mechanical and tribological properties of a new ceramic–polymer nanocomposite in which polyaryletherketone (PAEK) polymer was reinforced with titanium silicon carbide (Ti3SiC2), a ceramic nanolaminate belonging to the MAX phase family (M is an early transition metal, A represents group IIIA or IVA element and X is either carbon and/or nitrogen) are reported for the first time. PAEK–Ti3SiC2 nanocomposites with varying volume fractions of Ti3SiC2 were processed by hot pressing. The effect of Ti3SiC2 on the thermal expansion, bulk hardness, mechanical strength, wear and friction properties was systematically analyzed and the results are discussed. The study confirms that the Ti3SiC2 controlled the high thermal expansion property of PAEK polymer. In addition to that, it enhanced the wear resistance and mechanical strength of PAEK without affecting its inherent low-friction characteristics.  相似文献   

8.
The joining of two pieces of SiC-based ceramic materials (SiC or Cf/SiC composite) was conducted using Ti3SiC2 as filler in vacuum in the joining temperatures range from 1200 °C to 1600 °C. The similar chemical reactions took place at the interface between Ti3SiC2 and SiC or Cf/SiC, and became more complete with joining temperature increases, and with the consequent increased joining strengths of the SiC and Cf/SiC joints. Based on the XRD and SEM analyses, it turns out that two reasons are most important for the high joining strengths of the SiC and Cf/SiC joints. One is the development of layered Ti3SiC2 ceramic, which has plasticity in nature and can contribute to thermal stress relaxation of the joints; the other is the chemical reactions between Ti3SiC2 and the base materials which result in good interface bonding.  相似文献   

9.
SiCf/SiC composites with PIP–SiC interphase were prepared as electromagnetic interference (EMI) shielding materials by chemical vapor infiltration method. Effects of thermal oxidation on electrical and EMI shielding properties of the composites in X band were investigated. The as-received composites show high electrical conductivity of 0.12 S/cm and SET value of 29 dB, which is ascribed to the free carbon in the composites. The electrical conductivities and weight retentions of the composites decrease with oxidation temperatures or time increase. Likewise, the shielding properties deteriorate to some degree but the SET value exhibits more than 17 dB after oxidation at 1000 °C for 2 h and 15 dB at 900 °C for 6 h, respectively. The deterioration of electrical and EMI shielding properties during oxidation process is ascribed to the consumption of free carbon. The high SEA value and low SER value imply that absorption is the dominant EMI shielding mechanism. The SiC interphase can protect the fibers and keep EMI shielding properties of the composites at a high level.  相似文献   

10.
Preparation of Ti3SiC2   总被引:1,自引:0,他引:1  
Phase relations in the Ti-C-SiC system are studied with the aim of optimizing Ti3SiC2 synthesis. The optimal starting-mixture compositions for the synthesis of phase-pure Ti3SiC2 powder can be represented by the formula 3Ti + (1 ? z)C + (1 + z)SiC, where z = 0.2–0.6. In the temperature range 1630–1670 K under dynamic vacuum, the excess silicon vaporizes from the sample. The processes leading to the formation of impurity phases are discussed.  相似文献   

11.
The microstructure and mechanical properties of Ti3SiC2-SiC nanocomposite fabricated by in situ hot pressing (HP) synthesis process were studied. The results show that dense Ti3SiC2-SiC composite contained minor TiSi2 obtained by hot sintering at 1350°C for 1 h. The average grain size of Ti3SiC2 was 4 μm in length, and the size of SiC grains is about 100 nm. With its fine microstructure, the Ti3SiC2-SiC nanocomposite shows good mechanical properties.  相似文献   

12.
In this paper, the nano-laminated Ti3SiC2 ceramics were fabricated by liquid silicon infiltration of gelcast porous titanium carbide (TiC) preforms. The phase compositions and microstructures of the synthesized samples at various infiltration times and temperatures were analyzed by the X-ray diffraction (XRD) technique and were observed by field emission scanning electron microscopy (FESEM). The results showed that the formed Ti3SiC2 decomposes to the TiC phase with the increase of infiltration time. It was found from the XRD patterns that the samples with an 88?wt% Ti3SiC2 MAX phase can be produced with infiltration at 1500°C for 1?h with 50 vol% solid loading and 10?wt% monomer content. It is found that the hardness and flexural strength of Ti3SiC2-based ceramic has been reduced with a decrease in SiC and TiC impurities and reach 5.8?GPa and 420?MPa, respectively, for the sample with 15?wt% impurity. The microstructure evaluation revealed that the purity and properties of samples were affected both through the gelcasting and infiltration parameters.  相似文献   

13.
Synthesis of composite materials with improved mechanical properties is considered. Pulse discharge sintering (PDS) technique was utilized for consolidation and synthesis of double phase Ti3SiC2/TiC composites from the initial powders TiH2/SiC/TiC. Scanning electron microscopy with energy-dispersive spectrometry (SEM with EDS) and X-ray diffractometry (XRD) were exploited for the analysis of the microstructure and composition of the sintered specimens. Mechanical tests showed high bending and compression strength and low Vickers hardness of Ti3SiC2-rich specimens. The reasons of this behaviour are in the features of the textured microstructure of Ti3SiC2 phase.  相似文献   

14.
Fabrication of monolithic Ti3SiC2 has been investigated through the route of reactive sintering of Ti/Si/2TiC mixtures. Significant phase differences existed between the surface and the interior of as-synthesized products due to the evaporation of Si during the reaction process. The use of a 3Ti/SiC/C mixture as a powder bed could control the evaporation of Si and develop monolithic Ti3SiC2. A reaction model for the formation of Ti3SiC2 in the Ti/Si/2TiC system is discussed.On leave from  相似文献   

15.
Cu/Ti3SiC2 composite: a new electrofriction material   总被引:1,自引:0,他引:1  
 Cu/Ti3SiC2 composite, a new electrofriction material, was prepared, for the first time, by PM method. The microstructure, mechanical and electrical properties of the Cu/Ti3SiC2 composites were investigated and were compared with those of Cu/graphite composites. The results demonstrated that Cu/Ti3SiC2 composites had superior mechanical properties over Cu/graphite composites. At filer content of less than 20 vol%, the electrical conductivity for Cu/Ti3SiC2 composites was higher than that for Cu/graphite composites; at high filer content, the electrical conductivity for Cu/Ti3SiC2 composites was lower than that for Cu/graphite composites because of the presence of residual pores. It was found that like Cu/graphite composite, Cu/Ti3SiC2 was a self-lubricated material. The compressive yield strength, Brinell hardness, relative ratio of compressive for Cu-30 vol% Ti3SiC2 composites are 307 MPa, 140, 15.7% respectively. Received: 29 December 1998/Accepted: 15 February 1999  相似文献   

16.
Pressureless sintering of Ti3SiC2 ceramics has been investigated by using mechanically alloyed elemental Ti, Si and C powder mixture as the starting materials. It has been found that mechanical alloying enhanced both the formation of Ti3SiC2 phase and the densification during sintering process. Highly dense Ti3SiC2 ceramics with a relative density up to 99% and a phase purity of 80% Ti3SiC2 (TiCx as the secondary phase) were obtained by sintering the mechanically alloyed powders at relatively low temperatures near 1773 K in an argon atmosphere of 0.1 MPa. The physical properties of the present pressureless-sintered Ti3SiC2-based ceramics are comparable to those of nearly single phase Ti3SiC2 ceramics fabricated by the reactive hot-isostatic pressing (HIP) that had been used so far.  相似文献   

17.
This paper describes the reduction of titanium dioxide with a mixture of silicon carbide and silicon powders at a temperature of 1550°C under vacuum. It has been shown that the use of the combined reductant enables the preparation of the ternary phase Ti3SiC2 through concurrent carboand silicothermic processes. The optimal compositions for Ti3SiC2 formation are TiO2 + (1.5–x)SiC + 2xSi with x = 0.4–0.5. The Ti3SiC2 yield then reaches 96 wt %.  相似文献   

18.
Temperature fluctuation/hot pressing synthesis of Ti3SiC2   总被引:5,自引:0,他引:5  
A novel temperature fluctuation synthesis and simultaneous densification process for the preparation of Ti3SiC2 was developed. The advantages of this novel method include low synthesis temperature, short reaction time and simultaneous densification. The microstructure and room temperature mechanical properties of the Ti3SiC2 synthesized using this method were investigated. The result demonstrated that the Ti3SiC2 ceramic consisted of mainly laminated grains. It was found, with the aid of computer simulated crystallite shape, that the laminated Ti3SiC2 grains were composed of thin hexagonal plates. These laminated grains characterized the Ti3SiC2, and were responsible for the mechanical properties of the polycrystalline Ti3SiC2 ceramic. The measured flexural strength and the fracture toughness were 470 ± 26 MPa and 7.0 ± 0.2 MPa·m1/2, respectively. The high toughness was attributed to the contribution of crack deflection, crack bridging, delaminating and grain pull-out of laminated Ti3SiC2.  相似文献   

19.
Bonding mechanism between silicon carbide and thin foils of reactive metals   总被引:4,自引:0,他引:4  
Pressureless-sintered SiC pieces and SiC single crystals were joined with foils of reactive metals at 1500° C (1773 K) for titanium and zirconium foils or at 1000° C (1273 K) for Al/Ti/Al foils. Bend testing at various temperatures up to 1400° C (1673 K), optical and electron microscopy, and electron-probe X-ray microanalysis studies were carried out on the specimens. From the results, it was concluded that the fairly high bond strength of titanium-foil joined SiC specimens might be attributed to the formation of a Ti3SiC2 compound, since good lattice matching between SiC and Ti3SiC2 was obtained in the SiC single crystals. Also in the Al/Ti/Al-foil joined SiC, high bond strength was obtained, but it decreased steeply at 600° C (873 K) because of a retained aluminium phase. The bond strength in the zirconium-foil joined SiC was low.  相似文献   

20.
Diffusion bonding of TiAl alloys and Ti3SiC2 ceramics were carried out in a vacuum atmosphere. The microstructures and mechanical properties of the bonded joints were investigated. Results showed that three coherent intermetallic layers formed in the TiAl/Ti3SiC2 joints during bonding process. The compound layer adjacent to Ti3SiC2 substrate was indicated to be Ti5Si3, in which brittle fracture of the joints took place during shear strength test. The properties of diffusion bonded joints were greatly improved attributed to the formation of a good transition in the joint as well as the relief of the residual stress when using Ni foil as interlayer. Formation mechanisms of the compound layers during bonding process were discussed. Shear test results showed that the maximum shear strength reached 52.3 MPa. Corresponding fractograph indicated that the crack mainly propagated along Ti3SiC2 substrate adjacent to the bonding zone, accompanied with an intergranular and transgranular fracture mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号