首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
在无线Mesh网络中,利用无线多信道路由协议可以提高网络的性能,因此信道资源的分配与管理对于无线Mesh网的性能优化起着十分重要的作用。本文介绍了一种以节点为单位进行信道分配的算法。  相似文献   

2.
为解决无线Mesh网络中的信道分配问题,提出了基于博弈论的信道分配(GBCA)算法。该算法将无线Mesh网中各节点的信道分配过程作为一个博弈过程,信道分配策略作为博弈者的策略选择,信噪比函数为博弈的效用函数。基于NS2的仿真结果表明该算法在吞吐量和丢包率方面都有较好的性能。  相似文献   

3.
在无线Mesh网络中,利用无线多信道路由协议可以提高网络的性能,因此信道资源的分配与管理对于无线Mesh网的性能优化起着十分重要的作用.本文介绍了一种以节点为单位进行信道分配的算法.  相似文献   

4.
一种新的基于最大流的无线Mesh网络信道分配算法   总被引:1,自引:0,他引:1  
在无线Mesh网络中,为节点配置多接口多信道MAC协议成为提高网络性能、扩大网络容量的有效手段之一。有效的信道分配策略在多信道无线Mesh网络中显得尤为重要。本文提出一种基于最大流的信道分配算法。该算法通过最大流计算网络中可达到的最大吞吐量,以此作为网络负载标准进行信道分配,将降低整个网络的总体干扰作为目标函数进行优化。仿真结果表明,即使在网络负载较重的情况下,算法仍能保持较好的性能。  相似文献   

5.
将无线Mesh网络技术应用于智能家居组网中对实现信息化、网络化智能家居系统具有重要意义。针对现有无线Mesh网络信道分配算法无法满足智能家居系统中网络连接稳定性、灵活性等需求的问题,提出了一种基于信道状态的动态信道分配算法。该算法利用控制信道交互的信息,通过Hello信息的交换、信道协商、数据传输三个主要步骤实现动态分配信道,有效提高了无线Mesh网络的稳定性。  相似文献   

6.
《现代电子技术》2018,(5):14-19
信道分配问题在多天线无线Mesh网络中已被各种文献证明是NP难问题。分析了一般的信道分配问题的复杂性与某些基本和常见的属性。结果表明,不同信道分配数量的复杂度和无线链路的数量呈指数关系。此外,估计了通过穷举搜索确定最优信道分配的理论运行时间,并通过实验验证。实验表明,给予一定的计算能力(如一个现成的笔记本电脑),在小规模和中等规模的商业无线Mesh网络中,对于最优解决信道分配问题是可行的。  相似文献   

7.
叶方  孙雪  李一兵 《电子与信息学报》2022,44(12):4265-4273
针对应急通信背景下无线Mesh网络(WMN)中存在的信道干扰和频谱资源利用不充分的问题,该文提出一种改进的离散蝙蝠算法(IDBA)用于求解最优部分重叠信道(POCs)分配方案。该方法采用K-means聚类算法优化网络拓扑,引入樽海鞘群的链式行为提高局部搜索能力,建立以最小化链路加权干扰为目标的线性规划模型来解决流量汇聚情况可能造成的网络瓶颈链路问题。仿真结果表明,在不同网络规模下,相比于其他基于群智能优化算法的信道分配方法,该方法具有较快的收敛速度和较优的搜索能力。此外,该方法能够在节点密集时显著降低网络干扰并保持网络的稳定性。  相似文献   

8.
赵海涛  董育宁  张晖  李洋 《信号处理》2010,26(11):1747-1755
本文针对如何改善无线多跳Mesh网络的服务质量,满足无线多媒体业务对数据传输的带宽、时延、抖动的要求等问题,研究了一种基于无线信道状态和链路质量统计的MAC层最大重传次数的自适应调整算法。该算法通过对无线Mesh网络的无线信道环境的动态感知,利用分层判断法区分无线分组丢失的主要原因是无线差错还是网络拥塞导致,实时调整MAC层的最佳重传次数,降低无线网络中的分组冲突概率。基于链路状态信息的统计和最大重传策略,提出了一种启发式的基于环境感知的QoS路由优化机制HEAOR。该算法通过动态感知底层链路状态信息,利用灰色关联分析法自适应选择最优路径,在不增加系统复杂度的基础上,减少链路误判概率,提高传输效率。NS2仿真结果表明,HEAOR算法能有效减少重路由次数,降低链路失效概率,提高网络的平均吞吐率。本文提出的方法不仅能够优化MAC层的重传,而且通过发现跨层设计的优化参数实现对路径的优化选择。   相似文献   

9.
多信道无线 Mesh 网络可以有效解决在多跳无线网络中容量下降的问题。然而现有的路由协议大部分为单信道的多跳无线网络所设计,对于多信道 WMN 而言,会导致无效的路由路径。分析了现有无线 Mesh 网络的路由算法,详细讨论了基于 WCETT (Weighted Cumulative Expected Transmission Time)的两种路由度量,在此基础上提出了一种新的路由量度 WCETTR-LB,其对链路信道干扰的估算更加精确,能够感知周围链路对本信道的潜在干扰,并且考虑了节点负载度的概念,更加有助于实现负载均衡。  相似文献   

10.
为了解决无线Mesh网络中的信道分配问题,提出了一种基于博弈论的信道分配算法.该算法将网络中每一个节点模型化为一个博弈者,每个博弈者的策略为信道的分配方案,并将整个网络的吞吐量作为效用函数的目标,效用函数的物理意义则是在给定流量需求矩阵下传输的成功率.博弈者通过相互博弈来优化收益函数以最大化网络吞吐量.通过NS2.34仿真分析得出,GBCA算法在收敛性、丢包率和吞吐量上都要优于当前的算法.  相似文献   

11.
A resource-efficient and scalable wireless mesh routing protocol   总被引:3,自引:0,他引:3  
By binding logic addresses to the network topology, routing can be carried out without going through route discovery. This eliminates the initial route discovery latency, saves storage space otherwise needed for routing table, and reduces the communication overhead and energy consumption. In this paper, an adaptive block addressing (ABA) scheme is first introduced for logic address assignment as well as network auto-configuration purpose. The scheme takes into account the actual network topology and thus is fully topology-adaptive. Then a distributed link state (DLS) scheme is further proposed and put on top of the block addressing scheme to improve the quality of routes, in terms of hop count or other routing cost metrics used, robustness, and load balancing. The network topology reflected in logic addresses is used as a guideline to tell towards which direction (rather than next hop) a packet should be relayed. The next hop is derived from each relaying node’s local link state table. The routing scheme, named as topology-guided DLS (TDLS) as a whole, scales well with regard to various performance metrics. The ability of TDLS to provide multiple paths also precludes the need for explicit route repair, which is the most complicated part in many wireless routing protocols. While this paper targets low rate wireless mesh personal area networks (LR-WMPANs), including wireless mesh sensor networks (WMSNs), the TDLS itself is a general scheme and can be applied to other non-mobile wireless mesh networks.  相似文献   

12.
Service-oriented wireless mesh networks have recently been receiving intensive attention as a pivotal component to implement the concept of ubiquitous computing due to their easy and cost-effective deployment. To deliver a variety of services to subscriber stations, a large volume of traffic is exchanged via mesh routers in the mesh backbone network. One of the critical problems in service-oriented wireless mesh networks is to improve the network throughput. Wireless network coding is a key technology to improve network throughput in multihop wireless networks since it can exploit not only the broadcast nature of the wireless channel, but also the native physical-layer coding ability by mixing simultaneously arriving radio waves at relay nodes. We first analyze the throughput improvement obtained by wireless network coding schemes in wireless mesh networks. Then we develop a heuristic joint link scheduling, channel assignment, and routing algorithm that can improve the network throughput for service-oriented wireless mesh networks. Our extensive simulations show that wireless network coding schemes can improve network throughput by 34 percent.  相似文献   

13.
IEEE 802.11 based wireless mesh networks with directional antennas are expected to be a new promising technology and an economic approach for providing wireless broadband services in rural areas. In this paper, we discuss interference models and address how they can affect the design of channel assignment in rural mesh networks. We present a new channel assignment framework based on graph coloring for rural wireless mesh networks. The goal of the framework is to allow synchronously transmitting or receiving data from multiple neighbor links at the same time, and continuously doing full-duplex data transfer on every link, creating an efficient rural mesh network without interference. Channel assignment is shown to be NP-hard. We frame this channel allocation problem in terms of Adjacent Vertex Distinguishing Edge Coloring (AVDEC). Detailed assignment results on grid topology are presented and discussed. Furthermore, we design an algorithm. Finally, we evaluate the perform- ance of the proposed algorithm through extensive simulations and show the algorithm is effective to the regular grid topologies, and the number of colors used by the algorithm is upper bounded by A ~ 1. Hence the algorithm guarantees that the number of channels available in standards such as IEEE 802.11a is sufficient to have a valid AVDEC for many grid topologies. We also evaluate the proposed algorithm for arbitrary graphs. The algorithm provides a lower upper bound on the minimum number of channels to the AVDEC index channel assignment problem.  相似文献   

14.
针对无线Mesh网络因受部署在本地的其他网络干扰而导致的传输能力下降的问题,设计了一种基于干扰感知的多接口动态信道分配算法予以克服。同时采用链接重建的方法避免传输中的数据流因信道改变而被破坏的问题。通过实验仿真,证明在复杂电磁环境下,该算法能有效降低网络干扰,保证网络服务质量。  相似文献   

15.
A wireless mesh network (WMN) is a type of communication network made up of wireless devices and organized in a mesh topology. Multicast is a fundamental service in WMNs because it efficiently distributes data among a group of nodes. Multicast algorithms in WMNs are designed to maximize system throughput and minimize delay in order to satisfy the end users?? requirement. Previous work has unrealistically assumed that the underlying WMN is link-homogeneous. We consider one important form of link heterogeneity: different link loss ratios, or equivalently different ETX. Different from other work addressing multicast in wireless networks, we point out that the local broadcast quality relies on the worst involved link. We model different link loss ratios by defining a new graph theory problem, Heterogeneous Weighted Steiner Connected Dominating Set (HW-SCDS), on an edge-weighted directed graph, where the edge weights model ETX, the reciprocal of link loss ratios. We minimize the number of transmissions in a multicast by computing a minimum HW-SCDS in the edge-weighted graph. We prove that HW-SCDS is NP-hard and devise a greedy algorithm for it. To improve the effectiveness of our algorithm, we design a dedicated channel assignment algorithm. Simulations show that our algorithm significantly outperforms the current best WMN multicast algorithm by both increasing throughput and reducing delay.  相似文献   

16.
In wireless networks, it is very important to optimize the number of channels, due to the limit on the number of usable channels in a given network. In addition, multimedia services with high QoS requirements with respect to throughput and delay have recently become popular. To satisfy these requirements, it has become important to find a way of providing multipath transmission. A channel assignment algorithm is presented that minimizes the number of required channels while satisfying the throughput requirements of source–destination pairs in multichannel, multiradio, multirate wireless mesh networks. A mathematical model is proposed that considers interference effect, link capacity, and throughput requirements. A novel channel assignment algorithm is developed that takes into account multipath selection, channel reusability, link capacity sharing, and global optimization. The performance of the algorithm is compared with that of CPLEX, using 24 network scenarios. The maximum gap between the CPLEX solutions and those of the proposed algorithm is, on average, only 4.8%.  相似文献   

17.
This paper presents a link allocation and rate assignment algorithm for multi-channel wireless networks. The objective is to reduce network conflicts and guarantee the fairness among links. We first design a new network model. With this network model, the multi-channel wireless network is divided into several subnets according to the number of channels. Based on this, we present a link allocation algorithm with time complexity O(l2 ) to allocate all links to subnets. This link allocation algorithm adopts conflict matrix to minimize the network contention factor. After all links are allocated to subnets, the rate assignment algorithm to maximize a fairness utility in each subnet is presented. The rate assignment algorithm adopts a near-optimal algorithm based on dual decomposition and realizes in a distributed way. Simulation results demonstrate that, compared with IEEE 802. 11b and slotted seeded channel hopping algorithm, our algorithm decreases network conflicts and improves the network throughput significantly.  相似文献   

18.
一种多射频、多信道无线mesh网络的信道分配算法   总被引:4,自引:4,他引:0  
宽带无线接入网得到广泛应用,廉价的数据回程带宽是决定宽带无线接入网成功应用的重要因素。丈中设计了一种使用多射频、多信道、方向性天线的新型无线mesh数据回程网,提出了一种基于连接图的等价变换来实现该无线mesh网络信道分配算法。仿真结果表明,文中提出的信道分配算法有效地减少链路间干扰,提高了网络性能。  相似文献   

19.
Next-generation wireless mobile communications will be driven by converged networks that integrate disparate technologies and services. The wireless mesh network is envisaged to be one of the key components in the converged networks of the future, providing flexible high- bandwidth wireless backhaul over large geographical areas. While single radio mesh nodes operating on a single channel suffer from capacity constraints, equipping mesh routers with multiple radios using multiple nonoverlap- ping channels can significantly alleviate the capacity problem and increase the aggregate bandwidth available to the network. However, the assignment of channels to the radio interfaces poses significant challenges. The goal of channel assignment algorithms in multiradio mesh networks is to minimize interference while improving the aggregate network capacity and maintaining the connectivity of the network. In this article we examine the unique constraints of channel assignment in wireless mesh networks and identify the key factors governing assignment schemes, with particular reference to interference, traffic patterns, and multipath connectivity. After presenting a taxonomy of existing channel assignment algorithms for WMNs, we describe a new channel assignment scheme called MesTiC, which incorporates the mesh traffic pattern together with connectivity issues in order to minimize interference in multi- radio mesh networks.  相似文献   

20.
针对无线Mesh网络的网络特性,提出了一种基于链路负载估算的拥塞控制策略LLECC。LLECC算法计算有效链路带宽和链路负载估算确定RED算法中的调整因子,通过调整因子调整RED算法中的参数从而实现动态的对无线网络拥塞控制。详细讨论了LLECC算法的实现过程和相关参数的计算方法,通过仿真分析验证了该算法对无线Mesh网络性能的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号